Receptive fields and suppressive fields in the early visual system

Initial models proposed that these operations are weighted sums, with weights given by a neuron’s receptive field. These models explain the basic features of response selectivity. They were later extended to explain a number of suppressive effects originating within and outside the region of the receptive field. The resulting models rely on division. In this division, the receptive field feeds into the numerator, and the denominator is provided by a larger, non-classical suppressive field. While the receptive field confers to a neuron the basic selectivity for stimulus properties, the suppressive field modulates responsiveness. A divisive suppressive field confers to neurons in early visual system a number of computational advantages. Recent evidence in higher cortical areas suggests that the modulation of divisive suppression is the primary means of operation of visual attention. In this chapter I summarize research in receptive fields and suppressive fields in lateral geniculate nucleus (LGN) and in primary visual cortex (V1). In the following, I refer to a “suppressive field” as though this term had wide acceptance. In reality, the concept has been proposed only for LGN neurons (Levick et al., 1972), and lies forgotten since 30 years. My hope is that it will find wide acceptance to describe responses of both LGN and V1 neurons. Receptive fields in LGN

[1]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[2]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[3]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[4]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[5]  D. Kernell,et al.  Quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents , 1963, The Journal of physiology.

[6]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[7]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[8]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[9]  W. Levick,et al.  Lateral geniculate neurons of cat: retinal inputs and physiology. , 1972, Investigative ophthalmology.

[10]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[11]  L. Maffei,et al.  The unresponsive regions of visual cortical receptive fields , 1976, Vision Research.

[12]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[13]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[14]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[15]  R. Shapley,et al.  A method of nonlinear analysis in the frequency domain. , 1980, Biophysical journal.

[16]  J D Victor,et al.  How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. , 1981, The Journal of physiology.

[17]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[18]  C. Enroth-Cugell,et al.  Spatio‐temporal interactions in cat retinal ganglion cells showing linear spatial summation. , 1983, The Journal of physiology.

[19]  T R Vidyasagar,et al.  Response of neurons in the cat's lateral geniculate nucleus to moving bars of different length , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  R. Shapley,et al.  The receptive field organization of X-cells in the cat: Spatiotemporal coupling and asymmetry , 1984, Vision Research.

[21]  C. Enroth-Cugell,et al.  Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. , 1984, Investigative ophthalmology & visual science.

[22]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[23]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[24]  J. Victor The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.

[25]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[26]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.

[27]  G. Orban,et al.  The suppressive influence of moving textured backgrounds on responses of cat striate neurons to moving bars. , 1987, Journal of neurophysiology.

[28]  P. C. Murphy,et al.  Corticofugal feedback influences the generation of length tuning in the visual pathway , 1987, Nature.

[29]  H. Spitzer,et al.  Complex-cell receptive field models , 1988, Progress in Neurobiology.

[30]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[31]  Peter Földiák,et al.  Adaptation and decorrelation in the cortex , 1989 .

[32]  Donald C. Hood,et al.  THE CONTROL OF VISUAL SENSITIVITY , 1990 .

[33]  J. L. Schnapf,et al.  5 – THE CONTROL OF VISUAL SENSITIVITY: Receptoral and Postreceptoral Processes , 1990 .

[34]  L. Palmer,et al.  The two-dimensional spatial structure of nonlinear subunits in the receptive fields of complex cells , 1990, Vision Research.

[35]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[36]  A. B. Bonds,et al.  Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex , 1991, Vision Research.

[37]  H. Jones,et al.  The length‐response properties of cells in the feline dorsal lateral geniculate nucleus. , 1991, The Journal of physiology.

[38]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[39]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[40]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[41]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[42]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[43]  C. Li,et al.  Extensive integration field beyond the classical receptive field of cat's striate cortical neurons--classification and tuning properties. , 1994, Vision research.

[44]  Colin Blakemore,et al.  Interocular control of neuronal responsiveness in cat visual cortex , 1994, Nature.

[45]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[46]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[47]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[48]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[49]  C. Blakemore,et al.  Interocular suppression in the primary visual cortex: a possible neural basis of binocular rivalry , 1995, Vision Research.

[50]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[51]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[52]  A. Sillito,et al.  Spatial frequency tuning of orientation‐discontinuity‐sensitive corticofugal feedback to the cat lateral geniculate nucleus. , 1996, The Journal of physiology.

[53]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[54]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[56]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[57]  Christof Koch,et al.  Shunting Inhibition Does Not Have a Divisive Effect on Firing Rates , 1997, Neural Computation.

[58]  G. DeAngelis,et al.  Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. , 1997, Journal of neurophysiology.

[59]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[60]  C. Blakemore,et al.  Different mechanisms underlie three inhibitory phenomena in cat area 17 , 1998, Vision Research.

[61]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  U. Polat,et al.  Collinear stimuli regulate visual responses depending on cell's contrast threshold , 1998, Nature.

[63]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[64]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[65]  I. Ohzawa,et al.  Binocular cross-orientation suppression in the cat's striate cortex. , 1998, Journal of neurophysiology.

[66]  J. Anthony Movshon,et al.  Linearity and gain control in V1 simple cells , 1999 .

[67]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[68]  G Westheimer,et al.  Dynamics of spatial summation in primary visual cortex of alert monkeys. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  L. Diller,et al.  Spatial properties of the cat X-cell receptive field as a function of mean light level , 1999, Visual Neuroscience.

[70]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[71]  I. Ohzawa,et al.  Asymmetric Suppression Outside the Classical Receptive Field of the Visual Cortex , 1999, The Journal of Neuroscience.

[72]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[73]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[74]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[75]  C. Gilbert,et al.  Spatial distribution of contextual interactions in primary visual cortex and in visual perception. , 2000, Journal of neurophysiology.

[76]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[77]  Nicholas J. Priebe,et al.  Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning. , 2001, Journal of neurophysiology.

[78]  A. B. Bonds,et al.  Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex , 2001, Visual Neuroscience.

[79]  Mazyar Fallah,et al.  Attention! V1 Neurons Lining Up for Inspection , 2001, Neuron.

[80]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[81]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[82]  U. Polat,et al.  Contrast response characteristics of long-range lateral interactions in cat striate cortex , 2001, Neuroreport.

[83]  R. Shapley,et al.  Visual spatial characterization of macaque V1 neurons. , 2001, Journal of neurophysiology.

[84]  A. Sillito,et al.  Surround suppression in primate V1. , 2001, Journal of neurophysiology.

[85]  R. Reid,et al.  Predicting Every Spike A Model for the Responses of Visual Neurons , 2001, Neuron.

[86]  J. B. Levitt,et al.  The spatial extent over which neurons in macaque striate cortex pool visual signals , 2002, Visual Neuroscience.

[87]  A. Sillito,et al.  Spatial organization and magnitude of orientation contrast interactions in primate V1. , 2002, Journal of neurophysiology.

[88]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[89]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[90]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[91]  M. Carandini,et al.  A Synaptic Explanation of Suppression in Visual Cortex , 2002, The Journal of Neuroscience.

[92]  Matteo Carandini,et al.  The contrast integration field of cat LGN neurons , 2002 .

[93]  Paul R. Martin,et al.  Extraclassical Receptive Field Properties of Parvocellular, Magnocellular, and Koniocellular Cells in the Primate Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[94]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[95]  Brian Lau,et al.  Computational subunits of visual cortical neurons revealed by artificial neural networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Matteo Carandini,et al.  Responses of cat LGN neurons to plaids and movies , 2002 .

[97]  M. Carandini,et al.  Suppression without Inhibition in Visual Cortex , 2002, Neuron.

[98]  I. Ohzawa,et al.  Disinhibition Outside Receptive Fields in the Visual Cortex , 2002, The Journal of Neuroscience.

[99]  J. Touryan,et al.  Isolation of Relevant Visual Features from Random Stimuli for Cortical Complex Cells , 2002, The Journal of Neuroscience.

[100]  J. Movshon,et al.  Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[101]  R. Desimone,et al.  Interacting Roles of Attention and Visual Salience in V4 , 2003, Neuron.

[102]  J. A. Hirsch Synaptic physiology and receptive field structure in the early visual pathway of the cat. , 2003, Cerebral cortex.

[103]  Henry J. Alitto,et al.  Corticothalamic feedback and sensory processing , 2003, Current Opinion in Neurobiology.

[104]  C. Enroth-Cugell,et al.  X and Y ganglion cells inform the cat's brain about contrast in the retinal image , 2004, Experimental Brain Research.

[105]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[106]  J. Nelson,et al.  Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex , 2004, Experimental Brain Research.

[107]  W. Singer,et al.  Reciprocal lateral inhibition of on- and off-center neurones in the lateral geniculate body of the cat , 2004, Experimental Brain Research.

[108]  W. Singer,et al.  Inhibitory interaction in the cat's lateral geniculate nucleus , 2004, Experimental Brain Research.

[109]  A. M. Sillito,et al.  Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus , 1993, Experimental Brain Research.