How to Make Bias and Variance Errors Insensitive to System and Model Complexity in Identification

Solutions to optimal input design problems for system identification are sometimes believed to be sensitive to the underlying assumptions. For example, a wide class of problems can be solved with sinusoidal inputs with the same number of excitation frequencies (over the frequency range ) as the number of model parameters. The order of the true system is in many cases unknown and, hence, so is the required number of frequencies in the input. In this contribution we characterize when and how the input spectrum can be chosen so that the (asymptotic) variance error of a scalar function of the model parameters becomes independent of the order of the true system. A connection between these robust designs and the solutions of certain optimal input design problems is also made. Furthermore, we show that there are circumstances when using this type of input allows some model properties to be estimated consistently even when the model order is lower than the order of the true system. The results are derived under the assumptions of causal linear time invariant systems operating in open loop and excited by an input signal having a rational spectral factor with all poles and zeros strictly inside the unit circle.

[1]  Håkan Hjalmarsson,et al.  A geometric approach to variance analysis in system identification: Theory and nonlinear systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[2]  Lennart Ljung,et al.  Optimal experiment designs with respect to the intended model application , 1986, Autom..

[3]  Venkataramanan Balakrishnan,et al.  System identification: theory for the user (second edition): Lennart Ljung; Prentice-Hall, Englewood Cliffs, NJ, 1999, ISBN 0-13-656695-2 , 2002, Autom..

[4]  Håkan Hjalmarsson,et al.  Input design via LMIs admitting frequency-wise model specifications in confidence regions , 2005, IEEE Transactions on Automatic Control.

[5]  Håkan Hjalmarsson,et al.  Robust Input Design Using Sum of Squares Constraints , 2006 .

[6]  Håkan Hjalmarsson,et al.  Identification of ARX systems with non-stationary inputs - asymptotic analysis with application to adaptive input design , 2009, Autom..

[7]  H. Hjalmarsson,et al.  On Some Robustness Issues in Input Design , 2006 .

[8]  Karl Johan Åström,et al.  Computer-controlled systems (3rd ed.) , 1997 .

[9]  ShaoHuihe,et al.  Optimal closed-loop identification test design for internal model control , 2004 .

[10]  D.G. Dudley,et al.  Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.

[11]  Lennart Ljung,et al.  Some results on optimal experiment design , 2000, Autom..

[12]  Håkan Hjalmarsson,et al.  The Cost of Complexity in Identification of FIR Systems , 2008 .

[13]  Lennart Ljung,et al.  Unprejudiced optimal open loop input design for identification of transfer functions , 1985, Autom..

[14]  R. Mehra Optimal inputs for linear system identification , 1974 .

[15]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[16]  Håkan Hjalmarsson,et al.  System identification of complex and structured systems , 2009, 2009 European Control Conference (ECC).

[17]  L. Ljung,et al.  Asymptotic properties of black-box identification of transfer functions , 1985 .

[18]  Håkan Hjalmarsson,et al.  Identification for control: adaptive input design using convex optimization , 2001 .

[19]  Thomas L. Marzetta,et al.  Parameter estimation problems with singular information matrices , 2001, IEEE Trans. Signal Process..

[20]  Graham C. Goodwin,et al.  Robust optimal experiment design for system identification , 2007, Autom..

[21]  Håkan Hjalmarsson,et al.  For model-based control design, closed-loop identification gives better performance , 1996, Autom..

[22]  Håkan Hjalmarsson,et al.  A geometric approach to variance analysis in system identification: Linear Time-Invariant Systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[23]  Jonas Mårtensson,et al.  Geometric analysis of stochastic model errors in system identification , 2007 .

[24]  P. W. Zehna Invariance of Maximum Likelihood Estimators , 1966 .

[25]  H. Hjalmarsson,et al.  Consistent estimation of real NMP zeros in stable LTI systems of arbitrary complexity , 2009 .

[26]  L. Ljung Asymptotic variance expressions for identified black-box transfer function models , 1984 .

[27]  Martin B. Zarrop,et al.  Optimal experiment design for dynamic system identification , 1977 .

[28]  H. Hjalmarsson,et al.  Adaptive input design in system identification , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.