Image Segmentation Using Deep Learning: A Survey

Image segmentation is a key task in computer vision and image processing with important applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among others, and numerous segmentation algorithms are found in the literature. Against this backdrop, the broad success of Deep Learning (DL) has prompted the development of new image segmentation approaches leveraging DL models. We provide a comprehensive review of this recent literature, covering the spectrum of pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the relationships, strengths, and challenges of these DL-based segmentation models, examine the widely used datasets, compare performances, and discuss promising research directions.

[1]  Eugenio Culurciello,et al.  LinkNet: Exploiting encoder representations for efficient semantic segmentation , 2017, 2017 IEEE Visual Communications and Image Processing (VCIP).

[2]  Guan Huang,et al.  Attention-Guided Unified Network for Panoptic Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Gang Yu,et al.  BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation , 2018, ECCV.

[4]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[5]  Sanja Fidler,et al.  Gated-SCNN: Gated Shape CNNs for Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[6]  Heesoo Myeong,et al.  SeedNet: Automatic Seed Generation with Deep Reinforcement Learning for Robust Interactive Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[7]  Kaiming He,et al.  Panoptic Feature Pyramid Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Qingjie Liu,et al.  Road Extraction by Deep Residual U-Net , 2017, IEEE Geoscience and Remote Sensing Letters.

[9]  Bolei Zhou,et al.  Scene Parsing through ADE20K Dataset , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Nima Tajbakhsh,et al.  UNet++: A Nested U-Net Architecture for Medical Image Segmentation , 2018, DLMIA/ML-CDS@MICCAI.

[11]  Silvio Savarese,et al.  Joint 2D-3D-Semantic Data for Indoor Scene Understanding , 2017, ArXiv.

[12]  Dani Lischinski,et al.  Multi-scale Context Intertwining for Semantic Segmentation , 2018, ECCV.

[13]  Longin Jan Latecki,et al.  Semantic Segmentation of RGBD Images with Mutex Constraints , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[14]  Trevor Darrell,et al.  Learning to Segment Every Thing , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[15]  Anton van den Hengel,et al.  Wider or Deeper: Revisiting the ResNet Model for Visual Recognition , 2016, Pattern Recognit..

[16]  Brian Kulis,et al.  W-Net: A Deep Model for Fully Unsupervised Image Segmentation , 2017, ArXiv.

[17]  Frank Nielsen,et al.  Statistical region merging , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  E. Dubois,et al.  Digital picture processing , 1985, Proceedings of the IEEE.

[19]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[20]  Sanja Fidler,et al.  3D Graph Neural Networks for RGBD Semantic Segmentation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[21]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[22]  Antonio Torralba,et al.  Nonparametric scene parsing: Label transfer via dense scene alignment , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Jun Fu,et al.  Stacked Deconvolutional Network for Semantic Segmentation , 2017, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[24]  Jinjun Xiong,et al.  SPGNet: Semantic Prediction Guidance for Scene Parsing , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[25]  한보형,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015 .

[26]  Pengfei Xiong,et al.  Pyramid Attention Network for Semantic Segmentation , 2018, BMVC.

[27]  Rynson W. H. Lau,et al.  Geometry-Aware Distillation for Indoor Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Xiaogang Wang,et al.  Deep Dual Learning for Semantic Image Segmentation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[29]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[30]  Lianli Gao,et al.  Unsupervised urban scene segmentation via domain adaptation , 2020, Neurocomputing.

[31]  David A Lange,et al.  Deep Learning-Based Automated Image Segmentation for Concrete Petrographic Analysis , 2020, ArXiv.

[32]  Sinisa Segvic,et al.  Ladder-Style DenseNets for Semantic Segmentation of Large Natural Images , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[33]  Xuming He,et al.  Boundary-Aware Instance Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Sanja Fidler,et al.  Detect What You Can: Detecting and Representing Objects Using Holistic Models and Body Parts , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Peter Bajcsy,et al.  Cell Image Segmentation Using Generative Adversarial Networks, Transfer Learning, and Augmentations , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[36]  Yuning Jiang,et al.  Unified Perceptual Parsing for Scene Understanding , 2018, ECCV.

[37]  Chunhua Shen,et al.  PolarMask: Single Shot Instance Segmentation With Polar Representation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Sébastien Ourselin,et al.  Automatic Brain Tumor Segmentation Using Cascaded Anisotropic Convolutional Neural Networks , 2017, BrainLes@MICCAI.

[39]  Hong Liu,et al.  Expectation-Maximization Attention Networks for Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[40]  Nassir Navab,et al.  Deep Active Contours , 2016, ArXiv.

[41]  Xiangyu Zhang,et al.  Large Kernel Matters — Improve Semantic Segmentation by Global Convolutional Network , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Ye Wang,et al.  Semantic Segmentation with Reverse Attention , 2017, BMVC.

[43]  Shu Liu,et al.  Path Aggregation Network for Instance Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[44]  Rohit Mohan,et al.  EfficientPS: Efficient Panoptic Segmentation , 2020, International Journal of Computer Vision.

[45]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Cordelia Schmid,et al.  Learning object class detectors from weakly annotated video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Marc Toussaint,et al.  Multi-class image segmentation using conditional random fields and global classification , 2009, ICML '09.

[48]  Xin Zhao,et al.  Locality-Sensitive Deconvolution Networks with Gated Fusion for RGB-D Indoor Semantic Segmentation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Shervin Minaee,et al.  An ADMM Approach to Masked Signal Decomposition Using Subspace Representation , 2017, IEEE Transactions on Image Processing.

[50]  Tao Xu,et al.  SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation , 2017, Neuroinformatics.

[51]  Wei Wu,et al.  Large-Scale 3D Shape Reconstruction and Segmentation from ShapeNet Core55 , 2017, ArXiv.

[52]  Xilin Chen,et al.  Object-Contextual Representations for Semantic Segmentation , 2019, ECCV.

[53]  Jian Sun,et al.  BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[54]  Eric P. Xing,et al.  Dynamic-Structured Semantic Propagation Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[55]  Yunchao Wei,et al.  CCNet: Criss-Cross Attention for Semantic Segmentation , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[56]  Yuan Xie,et al.  Instance-Level Salient Object Segmentation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Geun-Sik Jo,et al.  Unsupervised feature learning for classification , 2016 .

[58]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[59]  Xiangyu Zhang,et al.  Learning Dynamic Routing for Semantic Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Xiaogang Wang,et al.  Context Encoding for Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[61]  Yu Qiao,et al.  Dynamic Multi-Scale Filters for Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[62]  Jun Fu,et al.  Adaptive Context Network for Scene Parsing , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[63]  Xin Li,et al.  FoveaNet: Perspective-Aware Urban Scene Parsing , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[64]  Lior Wolf,et al.  Unsupervised Microvascular Image Segmentation Using an Active Contours Mimicking Neural Network , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[65]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[66]  Alexander C. Berg,et al.  RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free , 2019, ArXiv.

[67]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[68]  Kun Yu,et al.  DenseASPP for Semantic Segmentation in Street Scenes , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[69]  Eric P. Xing,et al.  Symbolic Graph Reasoning Meets Convolutions , 2018, NeurIPS.

[70]  Jongyoul Park,et al.  CenterMask: Real-Time Anchor-Free Instance Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[71]  Subhransu Maji,et al.  Semantic contours from inverse detectors , 2011, 2011 International Conference on Computer Vision.

[72]  Concetto Spampinato,et al.  Semi Supervised Semantic Segmentation Using Generative Adversarial Network , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[73]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[74]  Raquel Urtasun,et al.  Fully Connected Deep Structured Networks , 2015, ArXiv.

[75]  Yoshua Bengio,et al.  ReSeg: A Recurrent Neural Network-Based Model for Semantic Segmentation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[76]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[77]  Yi Li,et al.  R-FCN: Object Detection via Region-based Fully Convolutional Networks , 2016, NIPS.

[78]  Shuicheng Yan,et al.  Semantic Object Parsing with Graph LSTM , 2016, ECCV.

[79]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  Jian Sun,et al.  ExFuse: Enhancing Feature Fusion for Semantic Segmentation , 2018, ECCV.

[81]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[82]  Stephen Gould,et al.  Decomposing a scene into geometric and semantically consistent regions , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[83]  Lei Zhou,et al.  Adaptive Pyramid Context Network for Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[84]  George Papandreou,et al.  Rethinking Atrous Convolution for Semantic Image Segmentation , 2017, ArXiv.

[85]  Vibhav Vineet,et al.  Conditional Random Fields as Recurrent Neural Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[86]  Pascal Poupart,et al.  Unsupervised Video Object Segmentation for Deep Reinforcement Learning , 2018, NeurIPS.

[87]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[88]  Yoshua Bengio,et al.  ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks , 2015, ArXiv.

[89]  Iasonas Kokkinos,et al.  Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs , 2014, ICLR.

[90]  Gang Wang,et al.  Context Contrasted Feature and Gated Multi-scale Aggregation for Scene Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[91]  Trevor Darrell,et al.  Segmentation from Natural Language Expressions , 2016, ECCV.

[92]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[93]  Quoc V. Le,et al.  Rethinking Pre-training and Self-training , 2020, NeurIPS.

[94]  Karan Sapra,et al.  Hierarchical Multi-Scale Attention for Semantic Segmentation , 2020, ArXiv.

[95]  Wei Liu,et al.  ParseNet: Looking Wider to See Better , 2015, ArXiv.

[96]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[97]  Ronan Collobert,et al.  Learning to Segment Object Candidates , 2015, NIPS.

[98]  Xinlei Chen,et al.  TensorMask: A Foundation for Dense Object Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[99]  Sylvain Paris,et al.  Automatic Portrait Segmentation for Image Stylization , 2016, Comput. Graph. Forum.

[100]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[101]  Lorenzo Porzi,et al.  Seamless Scene Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[102]  Ronan Collobert,et al.  Learning to Refine Object Segments , 2016, ECCV.

[103]  Thomas S. Huang,et al.  Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[104]  Jingdong Wang,et al.  OCNet: Object Context Network for Scene Parsing , 2018, ArXiv.

[105]  Jana Kosecka,et al.  Joint Semantic Segmentation and Depth Estimation with Deep Convolutional Networks , 2016 .

[106]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[107]  Asoke K. Nandi,et al.  Medical Image Segmentation Using Deep Learning: A Survey , 2020, IET Image Process..

[108]  Laurent Najman,et al.  Watershed of a continuous function , 1994, Signal Process..

[109]  Yi Yang,et al.  Attention to Scale: Scale-Aware Semantic Image Segmentation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[110]  Xu Liu,et al.  An End-To-End Network for Panoptic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[111]  Yingli Tian,et al.  Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[112]  Hongming Xu,et al.  Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks , 2018, ArXiv.

[113]  Jaegul Choo,et al.  Cars Can’t Fly Up in the Sky: Improving Urban-Scene Segmentation via Height-Driven Attention Networks , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[114]  Min Bai,et al.  Learning Deep Structured Active Contours End-to-End , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[115]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[116]  Fatih Murat Porikli,et al.  Saliency-aware geodesic video object segmentation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[117]  Camille Couprie,et al.  Semantic Segmentation using Adversarial Networks , 2016, NIPS 2016.

[118]  Cheng Yang,et al.  DCNAS: Densely Connected Neural Architecture Search for Semantic Image Segmentation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[119]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[120]  Carsten Rother,et al.  Panoptic Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[121]  Min Bai,et al.  Deep Watershed Transform for Instance Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[122]  Garrison W. Cottrell,et al.  Understanding Convolution for Semantic Segmentation , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[123]  Yambem Jina Chanu,et al.  Image Segmentation Using K -means Clustering Algorithm and Subtractive Clustering Algorithm , 2015 .

[124]  Demetri Terzopoulos,et al.  End-to-End Trainable Deep Active Contour Models for Automated Image Segmentation: Delineating Buildings in Aerial Imagery , 2020, ECCV.

[125]  Matthias Nießner,et al.  ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[126]  Charless C. Fowlkes,et al.  Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation , 2016, ECCV.

[127]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[128]  Jinglu Wang,et al.  Joint Semantic Segmentation and Boundary Detection Using Iterative Pyramid Contexts , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[129]  Min Bai,et al.  UPSNet: A Unified Panoptic Segmentation Network , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[130]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[131]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[132]  Daniel L. Rubin,et al.  Deep Active Lesion Segmentation , 2019, MLMI@MICCAI.

[133]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[134]  Guosheng Lin,et al.  Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[135]  Lisa Tang,et al.  Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation , 2016, IEEE Transactions on Medical Imaging.

[136]  Xiaoxiao Li,et al.  Semantic Image Segmentation via Deep Parsing Network , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[137]  Chongruo Wu,et al.  ResNeSt: Split-Attention Networks , 2020, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[138]  Zhi-Hua Zhou,et al.  A brief introduction to weakly supervised learning , 2018 .

[139]  Richard S. Zemel,et al.  End-to-End Instance Segmentation with Recurrent Attention , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[140]  Seungyong Lee,et al.  RDFNet: RGB-D Multi-level Residual Feature Fusion for Indoor Semantic Segmentation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[141]  George Papandreou,et al.  MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[142]  Ulrich Neumann,et al.  Depth-aware CNN for RGB-D Segmentation , 2018, ECCV.

[143]  Roberto Cipolla,et al.  Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding , 2015, BMVC.

[144]  Yi Zhang,et al.  PSANet: Point-wise Spatial Attention Network for Scene Parsing , 2018, ECCV.

[145]  Luis Álvarez,et al.  A Morphological Approach to Curvature-Based Evolution of Curves and Surfaces , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[146]  Zhuowen Tu,et al.  Learning Instance Occlusion for Panoptic Segmentation , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[147]  Sanja Fidler,et al.  DARNet: Deep Active Ray Network for Building Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[148]  Kaiming He,et al.  Mask R-CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[149]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[150]  Andrew Owens,et al.  SUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labels , 2013, 2013 IEEE International Conference on Computer Vision.

[151]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[152]  Sheng Tang,et al.  Scale-Adaptive Convolutions for Scene Parsing , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[153]  Yong Jae Lee,et al.  YOLACT: Real-Time Instance Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[154]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[155]  Sanja Fidler,et al.  The Role of Context for Object Detection and Semantic Segmentation in the Wild , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[156]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[157]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[158]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[159]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[160]  Su Ruan,et al.  Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation , 2020, Computers in Biology and Medicine.

[161]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[162]  Demetri Terzopoulos,et al.  End-to-End Deep Convolutional Active Contours for Image Segmentation , 2019, ArXiv.

[163]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[164]  Yann LeCun,et al.  Road Scene Segmentation from a Single Image , 2012, ECCV.

[165]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[166]  Gregory Shakhnarovich,et al.  Feedforward semantic segmentation with zoom-out features , 2014, CVPR.

[167]  Geoffrey E. Hinton,et al.  Phoneme recognition using time-delay neural networks , 1989, IEEE Trans. Acoust. Speech Signal Process..

[168]  Ali Farhadi,et al.  SeGAN: Segmenting and Generating the Invisible , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[169]  Konstantin Sofiiuk,et al.  AdaptIS: Adaptive Instance Selection Network , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[170]  Ming-Hsuan Yang,et al.  Adversarial Learning for Semi-supervised Semantic Segmentation , 2018, BMVC.

[171]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[172]  Jianxiong Xiao,et al.  SUN RGB-D: A RGB-D scene understanding benchmark suite , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[173]  Anirban Mukhopadhyay,et al.  Habitat-Net: Segmentation of habitat images using deep learning , 2018, bioRxiv.

[174]  Kristen Grauman,et al.  Supervoxel-Consistent Foreground Propagation in Video , 2014, ECCV.

[175]  Marios Savvides,et al.  Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation , 2017, IEEE Transactions on Image Processing.

[176]  Antonio M. López,et al.  The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[177]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[178]  Marcus Liwicki,et al.  Scene labeling with LSTM recurrent neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[179]  Ian D. Reid,et al.  RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[180]  Mercedes Eugenia Paoletti,et al.  Deep learning classifiers for hyperspectral imaging: A review , 2019 .

[181]  Dieter Fox,et al.  A large-scale hierarchical multi-view RGB-D object dataset , 2011, 2011 IEEE International Conference on Robotics and Automation.

[182]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[183]  Rob Fergus,et al.  Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale Convolutional Architecture , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[184]  Horst-Michael Groß,et al.  Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[185]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[186]  Nima Tajbakhsh,et al.  Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation , 2019, Medical Image Anal..

[187]  Gang Yu,et al.  Learning a Discriminative Feature Network for Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[188]  Yi Li,et al.  Fully Convolutional Instance-Aware Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[189]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[190]  Bryan M. Williams,et al.  Learning Active Contour Models for Medical Image Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[191]  Adel Hafiane,et al.  V INE DISEASE DETECTION IN UAV MULTISPECTRAL IMAGES WITH DEEP LEARNING SEGMENTATION APPROACH , 2019 .

[192]  Eugenio Culurciello,et al.  ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation , 2016, ArXiv.

[193]  Zhenan Sun,et al.  Accurate iris segmentation in non-cooperative environments using fully convolutional networks , 2016, 2016 International Conference on Biometrics (ICB).

[194]  Jian Sun,et al.  Instance-Aware Semantic Segmentation via Multi-task Network Cascades , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[195]  Xueliang Zhang,et al.  Deep learning in remote sensing applications: A meta-analysis and review , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[196]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[197]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[198]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[199]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[200]  Peng Wang,et al.  Semantic Instance Segmentation via Deep Metric Learning , 2017, ArXiv.

[201]  Dieter Fox,et al.  DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks , 2017, Robotics: Science and Systems.

[202]  Jun Fu,et al.  Dual Attention Network for Scene Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).