Least squares based self‐tuning control of dual‐rate systems

A polynomial transformation technique is used to obtain a frequency‐domain model for a dual‐rate system in which the output sampling period is an integer multiple of the input updating period. Based on this model, a self‐tuning control algorithm is proposed by minimizing output tracking error criteria from directly the dual‐rate input–output data. Convergence properties of the algorithm are analysed in detail in the stochastic framework. The output tracking error at the output sampling instants has the property of minimum variance. It is shown that the control algorithm can achieve virtually optimal control asymptotically, ensuring the closed‐loop systems to be stable and globally convergent. A simulation example illustrates the self‐tuning scheme presented. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  G. Kranc,et al.  Input-output analysis of multirate feedback systems , 1957 .

[2]  Björn Wittenmark,et al.  On Self Tuning Regulators , 1973 .

[3]  Jagannathan Kanniah,et al.  Self-tuning regulator based on dual-rate sampling , 1984 .

[4]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[5]  R. Scattolini Self-tuning control of systems with infrequent and delayed output sampling , 1988 .

[6]  Robin J. Evans,et al.  An algorithm for multirate sampling adaptive control , 1989 .

[7]  Gene F. Franklin,et al.  A new optimal multirate control of linear periodic and time-invariant systems , 1990 .

[8]  M. S. Gelormino,et al.  Model predictive control of multi-rate sampled-data systems: a state-space approach , 1992 .

[9]  Jay H. Lee,et al.  Robust inferential control of multi-rate sampled-data systems , 1992 .

[10]  Gene F. Franklin,et al.  Multirate control: A new approach , 1992, Autom..

[11]  Takashi Yoneyama,et al.  Multi-rate Multivariable Model Predictive Control and Its Application to a Semi-Commercial Polymerization Reactor , 1992, 1992 American Control Conference.

[12]  Li Qiu,et al.  𝓗2-optimal Design of Multirate Sampled-data Systems , 1994, IEEE Trans. Autom. Control..

[13]  Li Qiu,et al.  H∞ design of general multirate sampled-data control systems , 1994, Autom..

[14]  R. Gudi,et al.  Multirate state and parameter estimation in an antibiotic fermentation with delayed measurements , 1994, Biotechnology and bioengineering.

[15]  Riccardo Scattolini,et al.  A multirate model-based predictive controller , 1995, IEEE Trans. Autom. Control..

[16]  Keck Voon Ling,et al.  A state space GPC with extensions to multirate control , 1996, Autom..

[17]  Julián Salt,et al.  Dual-rate adaptive control , 1996, Autom..

[18]  Tongwen Chen,et al.  Multirate sampled-data systems: all H∞ suboptimal controllers and the minimum entropy controller , 1999, IEEE Trans. Autom. Control..

[19]  Bengt Lennartson,et al.  State-space solution to the periodic multirate H∞ control problem: a lifting approach , 2000, IEEE Trans. Autom. Control..

[20]  Hiroaki Nishi,et al.  RIPPLE-SUPPRESSED MULTIRATE ADAPTIVE CONTROL , 2002 .

[21]  Sirish L. Shah,et al.  Generalized predictive control for non-uniformly sampled systems , 2002 .

[22]  Dongguang Li,et al.  Analysis of dual-rate inferential control systems , 2002, Autom..

[23]  Dongguang Li,et al.  Application of dual-rate modeling to CCR octane quality inferential control , 2001, IEEE Trans. Control. Syst. Technol..