Optimization-Based Online Initialization and Calibration of Monocular Visual-Inertial Odometry Considering Spatial-Temporal Constraints

The online system state initialization and simultaneous spatial-temporal calibration are critical for monocular Visual-Inertial Odometry (VIO) since these parameters are either not well provided or even unknown. Although impressive performance has been achieved, most of the existing methods are designed for filter-based VIOs. For the optimization-based VIOs, there is not much online spatial-temporal calibration method in the literature. In this paper, we propose an optimization-based online initialization and spatial-temporal calibration method for VIO. The method does not need any prior knowledge about spatial and temporal configurations. It estimates the initial states of metric-scale, velocity, gravity, Inertial Measurement Unit (IMU) biases, and calibrates the coordinate transformation and time offsets between the camera and IMU sensors. The work routine of the method is as follows. First, it uses a time offset model and two short-term motion interpolation algorithms to align and interpolate the camera and IMU measurement data. Then, the aligned and interpolated results are sent to an incremental estimator to estimate the initial states and the spatial–temporal parameters. After that, a bundle adjustment is additionally included to improve the accuracy of the estimated results. Experiments using both synthetic and public datasets are performed to examine the performance of the proposed method. The results show that both the initial states and the spatial-temporal parameters can be well estimated. The method outperforms other contemporary methods used for comparison.

[1]  Roland Siegwart,et al.  Robust visual inertial odometry using a direct EKF-based approach , 2015, IROS 2015.

[2]  Juan D. Tardós,et al.  Visual-Inertial Monocular SLAM With Map Reuse , 2016, IEEE Robotics and Automation Letters.

[3]  Roland Siegwart,et al.  Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[5]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Stefano Soatto,et al.  Visual-Inertial-Semantic Scene Representation for 3D Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Shaojie Shen,et al.  Robust initialization of monocular visual-inertial estimation on aerial robots , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[8]  Chen Chen,et al.  Online Spatial and Temporal Calibration for Monocular Direct Visual-Inertial Odometry , 2019, Sensors.

[9]  Gaurav S. Sukhatme,et al.  A General Framework for Temporal Calibration of Multiple Proprioceptive and Exteroceptive Sensors , 2010, ISER.

[10]  Guoquan Huang,et al.  Degenerate Motion Analysis for Aided INS With Online Spatial and Temporal Sensor Calibration , 2019, IEEE Robotics and Automation Letters.

[11]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[12]  Roland Siegwart,et al.  A General Approach to Spatiotemporal Calibration in Multisensor Systems , 2016, IEEE Transactions on Robotics.

[13]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[14]  R. Siegwart,et al.  Self-supervised calibration for robotic systems , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[15]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[16]  Hujun Bao,et al.  Robust and Efficient Visual-Inertial Odometry with Multi-plane Priors , 2019, PRCV.

[17]  Anastasios I. Mourikis,et al.  Online temporal calibration for camera–IMU systems: Theory and algorithms , 2014, Int. J. Robotics Res..

[18]  Wei Liu,et al.  Modeling Varying Camera-IMU Time Offset in Optimization-Based Visual-Inertial Odometry , 2018, ECCV.

[19]  Anastasios I. Mourikis,et al.  High-fidelity sensor modeling and self-calibration in vision-aided inertial navigation , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[20]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Guoquan Huang,et al.  Multi-Camera Visual-Inertial Navigation with Online Intrinsic and Extrinsic Calibration , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[22]  Ziyang Meng,et al.  Online Temporal Calibration Based on Modified Projection Model for Visual-Inertial Odometry , 2020, IEEE Transactions on Instrumentation and Measurement.

[23]  Guoquan Huang,et al.  Robocentric visual–inertial odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[24]  J. M. M. Montiel,et al.  Fast and Robust Initialization for Visual-Inertial SLAM , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[25]  Vijay Kumar,et al.  Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight , 2017, IEEE Robotics and Automation Letters.

[26]  Shaojie Shen,et al.  Online Temporal Calibration for Monocular Visual-Inertial Systems , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[27]  Roland Siegwart,et al.  Observability-Aware Self-Calibration of Visual and Inertial Sensors for Ego-Motion Estimation , 2019, IEEE Sensors Journal.

[28]  Anastasios I. Mourikis,et al.  3-D motion estimation and online temporal calibration for camera-IMU systems , 2013, 2013 IEEE International Conference on Robotics and Automation.

[29]  Paul Timothy Furgale,et al.  Continuous-time batch trajectory estimation using temporal basis functions , 2015, Int. J. Robotics Res..

[30]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[31]  Stefano Soatto,et al.  Visual-inertial navigation, mapping and localization: A scalable real-time causal approach , 2011, Int. J. Robotics Res..

[32]  Fei Gao,et al.  Real-time monocular dense mapping on aerial robots using visual-inertial fusion , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Roland Siegwart,et al.  Unified temporal and spatial calibration for multi-sensor systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  Yi Lin,et al.  Autonomous aerial navigation using monocular visual‐inertial fusion , 2018, J. Field Robotics.

[36]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[37]  Carlos Campos,et al.  Inertial-Only Optimization for Visual-Inertial Initialization , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[38]  Shaojie Shen,et al.  Monocular Visual-Inertial State Estimation for Mobile Augmented Reality , 2017, 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[39]  Frank Dellaert,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2015, IEEE Transactions on Robotics.

[40]  R. Gilmore,et al.  Baker‐Campbell‐Hausdorff formulas , 1974 .

[41]  Richard Elvira,et al.  ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM , 2021, IEEE Transactions on Robotics.

[42]  Yong Liu,et al.  LIC-Fusion: LiDAR-Inertial-Camera Odometry , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[43]  Hong Liu,et al.  An Online Initialization and Self-Calibration Method for Stereo Visual-Inertial Odometry , 2020, IEEE Transactions on Robotics.

[44]  Hong Liu,et al.  Online Initialization and Automatic Camera-IMU Extrinsic Calibration for Monocular Visual-Inertial SLAM , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[45]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[46]  Roland Siegwart,et al.  Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments , 2012, 2012 IEEE International Conference on Robotics and Automation.

[47]  Darius Burschka,et al.  Spatio-temporal initialization for IMU to camera registration , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[48]  Gaurav S. Sukhatme,et al.  Visual-Inertial Sensor Fusion: Localization, Mapping and Sensor-to-Sensor Self-calibration , 2011, Int. J. Robotics Res..

[49]  Agostino Martinelli,et al.  Closed-Form Solution of Visual-Inertial Structure from Motion , 2013, International Journal of Computer Vision.

[50]  Michael Gassner,et al.  SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems , 2017, IEEE Transactions on Robotics.

[51]  Yuanxin Wu,et al.  On 'A Kalman Filter-Based Algorithm for IMU-Camera Calibration: Observability Analysis and Performance Evaluation' , 2013, ArXiv.

[52]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[53]  Paul Timothy Furgale,et al.  Continuous-time batch estimation using temporal basis functions , 2012, 2012 IEEE International Conference on Robotics and Automation.

[54]  Supun Samarasekera,et al.  Multi-sensor navigation algorithm using monocular camera, IMU and GPS for large scale augmented reality , 2012, 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[55]  Shaojie Shen,et al.  Monocular Visual–Inertial State Estimation With Online Initialization and Camera–IMU Extrinsic Calibration , 2017, IEEE Transactions on Automation Science and Engineering.

[56]  Flavio Fontana,et al.  Simultaneous State Initialization and Gyroscope Bias Calibration in Visual Inertial Aided Navigation , 2017, IEEE Robotics and Automation Letters.

[57]  Salah Sukkarieh,et al.  Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions , 2012, IEEE Transactions on Robotics.