Adaptively Secure Constrained Pseudorandom Functions in the Standard Model

Constrained pseudorandom functions (CPRFs) allow learning “constrained” PRF keys that can evaluate the PRF on a subset of the input space, or based on some predicate. First introduced by Boneh and Waters [AC’13], Kiayias et al. [CCS’13] and Boyle et al. [PKC’14], they have shown to be a useful cryptographic primitive with many applications. These applications often require CPRFs to be adaptively secure, which allows the adversary to learn PRF values and constrained keys in an arbitrary order. However, there is no known construction of adaptively secure CPRFs based on a standard assumption in the standard model for any non-trivial class of predicates. Moreover, even if we rely on strong tools such as indistinguishability obfuscation (IO), the state-of-the-art construction of adaptively secure CPRFs in the standard model only supports the limited class of \(\mathbf{NC} ^1\) predicates.

[1]  Moni Naor,et al.  Pseudorandom Functions and Factoring , 2002, SIAM J. Comput..

[2]  Brent Waters,et al.  Efficient Identity-Based Encryption Without Random Oracles , 2005, EUROCRYPT.

[3]  Ryo Nishimaki,et al.  Adaptively Single-Key Secure Constrained PRFs for \mathrm NC^1 , 2019, Public Key Cryptography.

[4]  Ron Steinfeld,et al.  All-But-Many Lossy Trapdoor Functions and Selective Opening Chosen-Ciphertext Security from LWE , 2017, CRYPTO.

[5]  Dan Boneh,et al.  Efficient Lattice (H)IBE in the Standard Model , 2010, EUROCRYPT.

[6]  Damien Stehlé,et al.  Adaptively Secure Distributed PRFs from LWE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {LWE}$$\end{documen , 2018, Journal of Cryptology.

[7]  Vinod Vaikuntanathan,et al.  Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions - Or: How to Secretly Embed a Circuit in Your PRF , 2015, TCC.

[8]  Shota Yamada,et al.  Asymptotically Compact Adaptively Secure Lattice IBEs and Verifiable Random Functions via Generalized Partitioning Techniques , 2017, CRYPTO.

[9]  Craig Gentry,et al.  Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact Garbled Circuits , 2014, EUROCRYPT.

[10]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2001, JACM.

[11]  Brent Waters,et al.  Adaptively Secure Puncturable Pseudorandom Functions in the Standard Model , 2015, ASIACRYPT.

[12]  Nir Bitansky,et al.  Verifiable Random Functions from Non-interactive Witness-Indistinguishable Proofs , 2017, Journal of Cryptology.

[13]  Stephan Krenn,et al.  Learning with Rounding, Revisited: New Reduction, Properties and Applications , 2013, IACR Cryptol. ePrint Arch..

[14]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[15]  Abhishek Banerjee,et al.  New and Improved Key-Homomorphic Pseudorandom Functions , 2014, CRYPTO.

[16]  Rotem Tsabary,et al.  Fully Secure Attribute-Based Encryption for t-CNF from LWE , 2019, IACR Cryptol. ePrint Arch..

[17]  Chris Peikert,et al.  Privately Constraining and Programming PRFs, the LWE Way , 2017, IACR Cryptol. ePrint Arch..

[18]  Abhishek Banerjee,et al.  Pseudorandom Functions and Lattices , 2012, EUROCRYPT.

[19]  Brent Waters,et al.  How to use indistinguishability obfuscation: deniable encryption, and more , 2014, IACR Cryptol. ePrint Arch..

[20]  Chris Peikert,et al.  Public-key cryptosystems from the worst-case shortest vector problem: extended abstract , 2009, STOC '09.

[21]  Yevgeniy Dodis,et al.  Exposure-resilient cryptography , 2000 .

[22]  Brent Waters,et al.  Constrained Pseudorandom Functions and Their Applications , 2013, ASIACRYPT.

[23]  Tibor Jager,et al.  Verifiable Random Functions from Weaker Assumptions , 2015, TCC.

[24]  Aggelos Kiayias,et al.  Delegatable pseudorandom functions and applications , 2013, IACR Cryptol. ePrint Arch..

[25]  Damien Stehlé,et al.  Classical hardness of learning with errors , 2013, STOC '13.

[26]  Dan Boneh,et al.  Private Puncturable PRFs from Standard Lattice Assumptions , 2017, EUROCRYPT.

[27]  Dan Boneh,et al.  Key Homomorphic PRFs and Their Applications , 2013, CRYPTO.

[28]  Ryo Nishimaki,et al.  Adaptively Single-Key Secure Constrained PRFs for NC1 , 2018, IACR Cryptol. ePrint Arch..

[29]  Georg Fuchsbauer,et al.  Key-Homomorphic Constrained Pseudorandom Functions , 2015, TCC.

[30]  Chris Peikert,et al.  Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller , 2012, IACR Cryptol. ePrint Arch..

[31]  Vinod Vaikuntanathan,et al.  Private Constrained PRFs (and More) from LWE , 2017, TCC.

[32]  Georg Fuchsbauer,et al.  Adaptive Security of Constrained PRFs , 2014, IACR Cryptol. ePrint Arch..

[33]  Ran Canetti,et al.  Constraint-Hiding Constrained PRFs for NC1 from LWE , 2017, EUROCRYPT.

[34]  Shuichi Katsumata,et al.  Partitioning via Non-linear Polynomial Functions: More Compact IBEs from Ideal Lattices and Bilinear Maps , 2016, ASIACRYPT.

[35]  Brent Waters,et al.  Identity-Based (Lossy) Trapdoor Functions and Applications , 2012, EUROCRYPT.

[36]  Moni Naor,et al.  Number-theoretic constructions of efficient pseudo-random functions , 2004, JACM.

[37]  Shuichi Katsumata,et al.  Non-Zero Inner Product Encryption Schemes from Various Assumptions: LWE, DDH and DCR , 2019, IACR Cryptol. ePrint Arch..

[38]  Ryo Nishimaki,et al.  Constrained PRFs for \mathrmNC^1 in Traditional Groups , 2018, CRYPTO.

[39]  Brent Waters,et al.  Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[40]  Yael Tauman Kalai,et al.  Robustness of the Learning with Errors Assumption , 2010, ICS.

[41]  Ryo Nishimaki,et al.  Constrained PRFs for Bit-fixing ( and More ) from OWFs with Adaptive Security and Constant Collusion Resistance , 2019 .

[42]  Dan Boneh,et al.  Secure Identity Based Encryption Without Random Oracles , 2004, CRYPTO.

[43]  Leonid A. Levin,et al.  A Pseudorandom Generator from any One-way Function , 1999, SIAM J. Comput..

[44]  Mark Zhandry,et al.  Multiparty Key Exchange, Efficient Traitor Tracing, and More from Indistinguishability Obfuscation , 2014, Algorithmica.

[45]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2005, STOC '05.

[46]  Dan Boneh,et al.  Constraining Pseudorandom Functions Privately , 2015, Public Key Cryptography.

[47]  Shafi Goldwasser,et al.  Functional Signatures and Pseudorandom Functions , 2014, Public Key Cryptography.

[48]  Brent Waters,et al.  A Generic Approach to Constructing and Proving Verifiable Random Functions , 2017, TCC.

[49]  Vinod Vaikuntanathan,et al.  GGH15 Beyond Permutation Branching Programs: Proofs, Attacks, and Candidates , 2018, IACR Cryptol. ePrint Arch..

[50]  Damien Stehlé,et al.  Adaptively Secure Distributed PRFs from \mathsf LWE , 2018, TCC.

[51]  Ryo Nishimaki,et al.  Constrained PRFs for NC1 in Traditional Groups , 2018, IACR Cryptol. ePrint Arch..

[52]  Mihir Bellare,et al.  Simulation without the Artificial Abort: Simplified Proof and Improved Concrete Security for Waters' IBE Scheme , 2009, EUROCRYPT.

[53]  Brent Waters,et al.  Adaptively Secure Constrained Pseudorandom Functions , 2014, IACR Cryptol. ePrint Arch..

[54]  Ilan Komargodski,et al.  Be Adaptive, Avoid Overcommitting , 2017, CRYPTO.

[55]  David Cash,et al.  Bonsai Trees, or How to Delegate a Lattice Basis , 2010, Journal of Cryptology.