Witness-Succinct Universally-Composable SNARKs

[1]  Daniel Slamanig,et al.  Lift-and-Shift: Obtaining Simulation Extractable Subversion and Updatable SNARKs Generically , 2020, IACR Cryptol. ePrint Arch..

[2]  Mary Maller,et al.  Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS , 2020, IACR Cryptol. ePrint Arch..

[3]  Nicholas Spooner,et al.  Fractal: Post-Quantum and Transparent Recursive Proofs from Holography , 2020, IACR Cryptol. ePrint Arch..

[4]  Karim Baghery,et al.  Subversion-Resistant Simulation (Knowledge) Sound NIZKs , 2019, IACR Cryptol. ePrint Arch..

[5]  Markulf Kohlweiss,et al.  Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and Updatable Structured Reference Strings , 2019, IACR Cryptol. ePrint Arch..

[6]  Karim Baghery,et al.  Simulation Extractability in Groth's zk-SNARK , 2019, IACR Cryptol. ePrint Arch..

[7]  Eli Ben-Sasson,et al.  Aurora: Transparent Succinct Arguments for R1CS , 2019, IACR Cryptol. ePrint Arch..

[8]  Markulf Kohlweiss,et al.  Updatable and Universal Common Reference Strings with Applications to zk-SNARKs , 2018, IACR Cryptol. ePrint Arch..

[9]  Eike Kiltz,et al.  The Algebraic Group Model and its Applications , 2018, IACR Cryptol. ePrint Arch..

[10]  Dan Boneh,et al.  Bulletproofs: Short Proofs for Confidential Transactions and More , 2018, 2018 IEEE Symposium on Security and Privacy (SP).

[11]  Tommaso Gagliardoni,et al.  The Wonderful World of Global Random Oracles , 2018, IACR Cryptol. ePrint Arch..

[12]  Matthew Green,et al.  A multi-party protocol for constructing the public parameters of the Pinocchio zk-SNARK , 2018, IACR Cryptol. ePrint Arch..

[13]  Yuval Ishai,et al.  Ligero: Lightweight Sublinear Arguments Without a Trusted Setup , 2017, Designs, Codes and Cryptography.

[14]  Jens Groth,et al.  Snarky Signatures: Minimal Signatures of Knowledge from Simulation-Extractable SNARKs , 2017, IACR Cryptol. ePrint Arch..

[15]  Eli Ben-Sasson,et al.  Interactive Oracle Proofs , 2016, TCC.

[16]  Jens Groth,et al.  Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting , 2016, EUROCRYPT.

[17]  Jens Groth,et al.  On the Size of Pairing-Based Non-interactive Arguments , 2016, EUROCRYPT.

[18]  Eli Ben-Sasson,et al.  Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs , 2016, TCC.

[19]  Rafael Pass,et al.  Limits of Extractability Assumptions with Distributional Auxiliary Input , 2015, ASIACRYPT.

[20]  Dominique Unruh,et al.  Non-Interactive Zero-Knowledge Proofs in the Quantum Random Oracle Model , 2015, EUROCRYPT.

[21]  Ran Canetti,et al.  Practical UC security with a Global Random Oracle , 2014, CCS.

[22]  Abhishek Jain,et al.  Non-Malleable Zero Knowledge: Black-Box Constructions and Definitional Relationships , 2014, SCN.

[23]  Nir Bitansky,et al.  On the existence of extractable one-way functions , 2014, SIAM J. Comput..

[24]  Craig Gentry,et al.  Quadratic Span Programs and Succinct NIZKs without PCPs , 2013, IACR Cryptol. ePrint Arch..

[25]  Craig Gentry,et al.  Pinocchio: Nearly Practical Verifiable Computation , 2013, 2013 IEEE Symposium on Security and Privacy.

[26]  Markulf Kohlweiss,et al.  On the Non-malleability of the Fiat-Shamir Transform , 2012, INDOCRYPT.

[27]  Rafail Ostrovsky,et al.  New Techniques for Noninteractive Zero-Knowledge , 2012, JACM.

[28]  Ueli Maurer,et al.  Constructive Cryptography - A New Paradigm for Security Definitions and Proofs , 2011, TOSCA.

[29]  Ian Goldberg,et al.  Constant-Size Commitments to Polynomials and Their Applications , 2010, ASIACRYPT.

[30]  Yevgeniy Dodis,et al.  Efficient Constructions of Composable Commitments and Zero-Knowledge Proofs , 2008, CRYPTO.

[31]  Ran Canetti,et al.  Universally Composable Security with Global Setup , 2007, TCC.

[32]  Jens Groth,et al.  Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group Signatures , 2006, ASIACRYPT.

[33]  Marc Fischlin,et al.  Communication-Efficient Non-interactive Proofs of Knowledge with Online Extractors , 2005, CRYPTO.

[34]  Rafael Pass,et al.  New and improved constructions of non-malleable cryptographic protocols , 2005, STOC '05.

[35]  Dan Boneh,et al.  Efficient Selective-ID Secure Identity Based Encryption Without Random Oracles , 2004, IACR Cryptol. ePrint Arch..

[36]  Rafael Pass,et al.  On Deniability in the Common Reference String and Random Oracle Model , 2003, CRYPTO.

[37]  Juan A. Garay,et al.  Strengthening Zero-Knowledge Protocols Using Signatures , 2003, Journal of Cryptology.

[38]  Jesper Buus Nielsen,et al.  Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing Encryption Case , 2002, CRYPTO.

[39]  Yehuda Lindell,et al.  Universally composable two-party and multi-party secure computation , 2002, STOC '02.

[40]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[41]  Avi Wigderson,et al.  On interactive proofs with a laconic prover , 2001, computational complexity.

[42]  Ivan Damgård,et al.  Verifiable Encryption, Group Encryption, and Their Applications to Separable Group Signatures and Signature Sharing Schemes , 2000, ASIACRYPT.

[43]  Silvio Micali,et al.  Computationally Sound Proofs , 2000, SIAM J. Comput..

[44]  Amit Sahai,et al.  Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[45]  Oded Goldreich,et al.  On the Complexity of Interactive Proofs with Bounded Communication , 1998, Inf. Process. Lett..

[46]  Mihir Bellare,et al.  Random oracles are practical: a paradigm for designing efficient protocols , 1993, CCS '93.

[47]  Joe Kilian,et al.  A note on efficient zero-knowledge proofs and arguments (extended abstract) , 1992, STOC '92.

[48]  Manuel Blum,et al.  Proving Security Against Chosen Cyphertext Attacks , 1988, CRYPTO.

[49]  Michael Klooß On Efficient Zero-Knowledge Arguments , 2023 .

[50]  Paul Grubbs,et al.  Spartan and Bulletproofs are Simulation-Extractable (for Free!) , 2023, EUROCRYPT.

[51]  Daniel Tschudi,et al.  Fiat-Shamir Bulletproofs are Non-Malleable (in the Random Oracle Model) , 2023, IACR Cryptol. ePrint Arch..

[52]  Markulf Kohlweiss,et al.  What Makes Fiat-Shamir zkSNARKs (Updatable SRS) Simulation Extractable? , 2022, SCN.

[53]  Hamidreza Khoshakhlagh,et al.  Impossibilities in Succinct Arguments: Black-box Extraction and More , 2022, IACR Cryptol. ePrint Arch..

[54]  Satyanarayana V. Lokam,et al.  Dew: Transparent Constant-sized zkSNARKs , 2022, IACR Cryptol. ePrint Arch..

[55]  Abhi Shelat,et al.  Improved Straight-Line Extraction in the Random Oracle Model With Applications to Signature Aggregation , 2022, IACR Cryptol. ePrint Arch..

[56]  Anna Lysyanskaya,et al.  Universally Composable Sigma-protocols in the Global Random-Oracle Model , 2022, IACR Cryptol. ePrint Arch..

[57]  Anna Lysyanskaya,et al.  Efficient and Universally Composable Non-Interactive Zero-Knowledge Proofs of Knowledge with Security Against Adaptive Corruptions , 2022, IACR Cryptol. ePrint Arch..

[58]  Daniel Tschudi,et al.  Fiatâ€"Shamir Bulletproofs are Non-Malleable (in the Algebraic Group Model) , 2021, IACR Cryptol. ePrint Arch..

[59]  Shuichi Katsumata,et al.  A New Simple Technique to Bootstrap Various Lattice Zero-Knowledge Proofs to QROM Secure NIZKs , 2021, IACR Cryptol. ePrint Arch..

[60]  Markulf Kohlweiss,et al.  Another Look at Extraction and Randomization of Groth's zk-SNARK , 2021, Financial Cryptography.

[61]  Jonathan Katz,et al.  Algebraic Adversaries in the Universal Composability Framework , 2021, IACR Cryptol. ePrint Arch..

[62]  Aggelos Kiayias,et al.  Composition with Knowledge Assumptions , 2021, IACR Cryptol. ePrint Arch..

[63]  Karim Baghery,et al.  Tiramisu: Black-Box Simulation Extractable NIZKs in the Updatable CRS Model , 2020, IACR Cryptol. ePrint Arch..

[64]  Dario Fiore,et al.  Lunar: a Toolbox for More Efficient Universal and Updatable zkSNARKs and Commit-and-Prove Extensions , 2020, IACR Cryptol. ePrint Arch..

[65]  Nicholas Spooner,et al.  Recursive Proof Composition from Accumulation Schemes , 2020, TCC.

[66]  Carla Ràfols,et al.  Simulation extractable versions of Groth’s zk-SNARK revisited , 2023, IACR Cryptol. ePrint Arch..

[67]  Ran Canetti,et al.  Triply Adaptive UC NIZK , 2020, IACR Cryptol. ePrint Arch..

[68]  Helger Lipmaa,et al.  Simulation-Extractable SNARKs Revisited , 2020 .

[69]  Ariel Gabizon,et al.  PLONK: Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge , 2019, IACR Cryptol. ePrint Arch..

[70]  Alexander Vlasov,et al.  RedShift: Transparent SNARKs from List Polynomial Commitment IOPs , 2019, IACR Cryptol. ePrint Arch..

[71]  Eli Ben-Sasson,et al.  Scalable, transparent, and post-quantum secure computational integrity , 2018, IACR Cryptol. ePrint Arch..

[72]  Sean Bowe,et al.  Making Groth's zk-SNARK Simulation Extractable in the Random Oracle Model , 2018, IACR Cryptol. ePrint Arch..

[73]  Ahmed E. Kosba,et al.  C ∅ C ∅ : A Framework for Building Composable Zero-Knowledge Proofs , 2016 .

[74]  R. Ostrovsky,et al.  Perfect Non-interactive Zero Knowledge for NP , 2006, EUROCRYPT.

[75]  Moni Naor,et al.  Non-Malleable Cryptography (Extended Abstract) , 1991, STOC 1991.

[76]  G. Persiano,et al.  Robust Non-interactive Zero Knowledge , 2022 .