Convergence Analysis of the Hierarchical Least Squares Algorithm for Bilinear-in-Parameter Systems

This paper studies the convergence of the hierarchical identification algorithm for bilinear-in-parameter systems. By replacing the unknown variables in the information vector with their estimates, a hierarchical least squares algorithm is derived based on the model decomposition. The proposed algorithm has higher computational efficiency than the over-parameterization model-based recursive least squares algorithm. The performance analysis shows that the parameter estimation errors converge to zero under persistent excitation conditions. The effectiveness of the proposed algorithm is verified by simulation examples.

[1]  Dongqing Wang,et al.  Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models , 2016, Appl. Math. Lett..

[2]  Ximei Liu,et al.  New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems , 2014, Nonlinear Dynamics.

[3]  Ligang Wu,et al.  Filtering of Interval Type-2 Fuzzy Systems With Intermittent Measurements , 2016, IEEE Transactions on Cybernetics.

[4]  Okyay Kaynak,et al.  Improved PLS Focused on Key-Performance-Indicator-Related Fault Diagnosis , 2015, IEEE Transactions on Industrial Electronics.

[5]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[6]  Stanisław Hałgas,et al.  Catastrophic Fault Diagnosis of a Certain Class of Nonlinear Analog Circuits , 2015, Circuits Syst. Signal Process..

[7]  Feng Ding,et al.  Identification methods for Hammerstein nonlinear systems , 2011, Digit. Signal Process..

[8]  Feng Ding,et al.  Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition , 2016, Circuits Syst. Signal Process..

[9]  Feng Ding,et al.  States based iterative parameter estimation for a state space model with multi-state delays using decomposition , 2015, Signal Process..

[10]  Ji Huang,et al.  I2-I∞ filtering for multirate nonlinear sampled-data systems using T-S fuzzy models , 2013, Digit. Signal Process..

[11]  Hak-Keung Lam,et al.  Model reduction for interval type-2 Takagi-Sugeno fuzzy systems , 2015, Autom..

[12]  Hak-Keung Lam,et al.  Observer-Based Fault Detection for Nonlinear Systems With Sensor Fault and Limited Communication Capacity , 2016, IEEE Transactions on Automatic Control.

[13]  Yan Ji,et al.  Unified Synchronization Criteria for Hybrid Switching-Impulsive Dynamical Networks , 2015, Circuits Syst. Signal Process..

[14]  Wei Zhang,et al.  Improved least squares identification algorithm for multivariable Hammerstein systems , 2015, J. Frankl. Inst..

[15]  Jianbin Qiu,et al.  Fuzzy-Model-Based Reliable Static Output Feedback $\mathscr{H}_{\infty }$ Control of Nonlinear Hyperbolic PDE Systems , 2016, IEEE Transactions on Fuzzy Systems.

[16]  F. Ding,et al.  Modelling and multi-innovation parameter identification for Hammerstein nonlinear state space systems using the filtering technique , 2016 .

[17]  Huijun Gao,et al.  Data-Based Techniques Focused on Modern Industry: An Overview , 2015, IEEE Transactions on Industrial Electronics.

[18]  Feng Ding,et al.  Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle , 2014, Appl. Math. Comput..

[19]  Ligang Wu,et al.  Observer-based adaptive sliding mode control for nonlinear Markovian jump systems , 2016, Autom..

[20]  F. Ding,et al.  Convergence of the recursive identification algorithms for multivariate pseudo‐linear regressive systems , 2016 .

[21]  Feng Ding,et al.  Recursive Parameter Estimation Algorithms and Convergence for a Class of Nonlinear Systems with Colored Noise , 2016, Circuits Syst. Signal Process..

[22]  Jianbin Qiu,et al.  A Combined Adaptive Neural Network and Nonlinear Model Predictive Control for Multirate Networked Industrial Process Control , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[23]  Mingyu Wang,et al.  Approximation-Based Adaptive Tracking Control for MIMO Nonlinear Systems With Input Saturation , 2015, IEEE Transactions on Cybernetics.

[24]  Feng Yu,et al.  Recursive parameter identification of Hammerstein-Wiener systems with measurement noise , 2014, Signal Process..

[25]  Hamid Reza Karimi,et al.  New approach to delay-dependent H∞ control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions , 2015, J. Frankl. Inst..

[26]  Feng Ding,et al.  Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle , 2015, Signal Process..

[27]  Shivaram Kamat,et al.  Modeling of pH process using wavenet based Hammerstein model , 2007 .

[28]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[29]  Shen Yin,et al.  Performance Monitoring for Vehicle Suspension System via Fuzzy Positivistic C-Means Clustering Based on Accelerometer Measurements , 2015, IEEE/ASME Transactions on Mechatronics.

[30]  L. Ljung,et al.  Maximum Likelihood Identification of Wiener Models , 2008 .

[31]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[32]  Baolin Liu,et al.  Recursive Extended Least Squares Parameter Estimation for Wiener Nonlinear Systems with Moving Average Noises , 2013, Circuits, Systems, and Signal Processing.

[33]  Peng Shi,et al.  Decentralized Adaptive Fuzzy Tracking Control for Robot Finger Dynamics , 2015, IEEE Transactions on Fuzzy Systems.

[34]  Peng Shi,et al.  Control of Nonlinear Networked Systems With Packet Dropouts: Interval Type-2 Fuzzy Model-Based Approach , 2015, IEEE Transactions on Cybernetics.

[35]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[36]  Feng Ding,et al.  Decomposition Based Newton Iterative Identification Method for a Hammerstein Nonlinear FIR System with ARMA Noise , 2014, Circuits Syst. Signal Process..

[37]  Maryam Dehghani,et al.  Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm. , 2014, ISA transactions.

[38]  Gene H. Golub,et al.  Matrix computations , 1983 .

[39]  Jianbin Qiu,et al.  Static-Output-Feedback ${\mathscr H}_{\bm \infty }$ Control of Continuous-Time T - S Fuzzy Affine Systems Via Piecewise Lyapunov Functions , 2013, IEEE Transactions on Fuzzy Systems.

[40]  Baolin Liu,et al.  A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems , 2014, Appl. Math. Comput..

[41]  Jozef Vörös,et al.  Identification of nonlinear dynamic systems with input saturation and output backlash using three-block cascade models , 2014, J. Frankl. Inst..

[42]  Er-Wei Bai,et al.  Iterative identification of Hammerstein systems , 2007, Autom..

[43]  Feng Ding,et al.  Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering , 2016 .

[44]  Feng Ding,et al.  Highly Efficient Identification Methods for Dual-Rate Hammerstein Systems , 2015, IEEE Transactions on Control Systems Technology.

[45]  Petre Stoica,et al.  Estimation of the parameters of a bilinear model with applications to submarine detection and system identification , 2007, Digit. Signal Process..

[46]  Er-Wei Bai,et al.  Iterative identification of Hammerstein systems , 2007, Autom..

[47]  Jozef Vörös,et al.  Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities , 2007, Syst. Control. Lett..

[48]  Feng Ding,et al.  Iterative estimation for a non-linear IIR filter with moving average noise by means of the data filtering technique , 2017, IMA J. Math. Control. Inf..

[49]  Jianbin Qiu,et al.  Nonsynchronized Robust Filtering Design for Continuous-Time T–S Fuzzy Affine Dynamic Systems Based on Piecewise Lyapunov Functions , 2013, IEEE Transactions on Cybernetics.

[50]  Er-Wei Bai,et al.  Least squares solutions of bilinear equations , 2006, Syst. Control. Lett..

[51]  F. Ding,et al.  Decomposition based recursive identification algorithms for bilinear-parameter models , 2014, Proceeding of the 11th World Congress on Intelligent Control and Automation.