GraphSC: Parallel Secure Computation Made Easy

We propose introducing modern parallel programming paradigms to secure computation, enabling their secure execution on large datasets. To address this challenge, we present Graph SC, a framework that (i) provides a programming paradigm that allows non-cryptography experts to write secure code, (ii) brings parallelism to such secure implementations, and (iii) meets the need for obliviousness, thereby not leaking any private information. Using Graph SC, developers can efficiently implement an oblivious version of graph-based algorithms (including sophisticated data mining and machine learning algorithms) that execute in parallel with minimal communication overhead. Importantly, our secure version of graph-based algorithms incurs a small logarithmic overhead in comparison with the non-secure parallel version. We build Graph SC and demonstrate, using several algorithms as examples, that secure computation can be brought into the realm of practicality for big data analysis. Our secure matrix factorization implementation can process 1 million ratings in 13 hours, which is a multiple order-of-magnitude improvement over the only other existing attempt, which requires 3 hours to process 16K ratings.

[1]  Helmut Veith,et al.  Secure two-party computations in ANSI C , 2012, CCS.

[2]  James Bennett,et al.  The Netflix Prize , 2007 .

[3]  Abhi Shelat,et al.  Fast two-party secure computation with minimal assumptions , 2013, CCS.

[4]  Elaine Shi,et al.  Automating Efficient RAM-Model Secure Computation , 2014, 2014 IEEE Symposium on Security and Privacy.

[5]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[6]  Jonathan Katz,et al.  On the Security of the Free-XOR Technique , 2012, IACR Cryptol. ePrint Arch..

[7]  Steven Myers,et al.  GPU and CPU parallelization of honest-but-curious secure two-party computation , 2013, ACSAC.

[8]  Mihir Bellare,et al.  Efficient Garbling from a Fixed-Key Blockcipher , 2013, 2013 IEEE Symposium on Security and Privacy.

[9]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[10]  Vladimir Kolesnikov,et al.  Improved Garbled Circuit: Free XOR Gates and Applications , 2008, ICALP.

[11]  Elaine Shi,et al.  Circuit ORAM: On Tightness of the Goldreich-Ostrovsky Lower Bound , 2015, IACR Cryptol. ePrint Arch..

[12]  Sergey Brin,et al.  Reprint of: The anatomy of a large-scale hypertextual web search engine , 2012, Comput. Networks.

[13]  David Eppstein,et al.  Privacy-preserving data-oblivious geometric algorithms for geographic data , 2010, GIS '10.

[14]  Elaine Shi,et al.  Oblivious RAM with O((logN)3) Worst-Case Cost , 2011, ASIACRYPT.

[15]  Scott Shenker,et al.  Spark: Cluster Computing with Working Sets , 2010, HotCloud.

[16]  Rafail Ostrovsky,et al.  Private information storage (extended abstract) , 1997, STOC '97.

[17]  Michael T. Goodrich,et al.  Privacy-preserving group data access via stateless oblivious RAM simulation , 2011, SODA.

[18]  Dan Boneh,et al.  Remote Oblivious Storage: Making Oblivious RAM Practical , 2011 .

[19]  Michael T. Goodrich,et al.  Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation , 2010, ICALP.

[20]  Esslli Site,et al.  Models of Computation , 2012 .

[21]  Rafail Ostrovsky,et al.  On the (in)security of hash-based oblivious RAM and a new balancing scheme , 2012, SODA.

[22]  Elaine Shi,et al.  Path ORAM: an extremely simple oblivious RAM protocol , 2012, CCS.

[23]  John C. Mitchell,et al.  Data-Oblivious Data Structures , 2014, STACS.

[24]  Yehuda Lindell,et al.  An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries , 2007, Journal of Cryptology.

[25]  Rafail Ostrovsky,et al.  Software protection and simulation on oblivious RAMs , 1996, JACM.

[26]  Kartik Nayak,et al.  ObliVM: A Programming Framework for Secure Computation , 2015, 2015 IEEE Symposium on Security and Privacy.

[27]  Jonathan Katz,et al.  Secure two-party computation in sublinear (amortized) time , 2012, CCS.

[28]  Marina Blanton,et al.  Data-oblivious graph algorithms for secure computation and outsourcing , 2013, ASIA CCS '13.

[29]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[30]  Abhi Shelat,et al.  PCF: A Portable Circuit Format for Scalable Two-Party Secure Computation , 2013, USENIX Security Symposium.

[31]  Peter Williams,et al.  Building castles out of mud: practical access pattern privacy and correctness on untrusted storage , 2008, CCS.

[32]  Florian Kerschbaum,et al.  Automatically optimizing secure computation , 2011, CCS '11.

[33]  Benny Pinkas,et al.  Oblivious RAM Revisited , 2010, CRYPTO.

[34]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[35]  Peter Williams,et al.  The Blind Stone Tablet: Outsourcing Durability to Untrusted Parties , 2009, NDSS.

[36]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[37]  Benny Applebaum,et al.  Garbling XOR Gates “For Free” in the Standard Model , 2016, Journal of Cryptology.

[38]  Kai-Min Chung,et al.  Statistically-secure ORAM with Õ(log2 n) Overhead , 2014, ASIACRYPT.

[39]  Kai-Min Chung,et al.  Oblivious Parallel RAM , 2014, IACR Cryptol. ePrint Arch..

[40]  Abhi Shelat,et al.  Two-Output Secure Computation with Malicious Adversaries , 2011, EUROCRYPT.

[41]  Dan Bogdanov,et al.  Sharemind: A Framework for Fast Privacy-Preserving Computations , 2008, ESORICS.

[42]  Yihua Zhang,et al.  PICCO: a general-purpose compiler for private distributed computation , 2013, CCS.

[43]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[44]  Ahmad-Reza Sadeghi,et al.  TASTY: tool for automating secure two-party computations , 2010, CCS '10.

[45]  Abhi Shelat,et al.  Billion-Gate Secure Computation with Malicious Adversaries , 2012, USENIX Security Symposium.

[46]  吉岡 克成,et al.  Network and Distributed System Security Symposium 2011参加報告(サービス管理,運用管理技術,セキュリティ管理,及び一般) , 2011 .

[47]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[48]  Carlos Guestrin,et al.  Distributed GraphLab : A Framework for Machine Learning and Data Mining in the Cloud , 2012 .

[49]  Michael T. Goodrich,et al.  Zig-zag sort: a simple deterministic data-oblivious sorting algorithm running in O(n log n) time , 2014, STOC.

[50]  Stratis Ioannidis,et al.  Privacy-Preserving Ridge Regression on Hundreds of Millions of Records , 2013, 2013 IEEE Symposium on Security and Privacy.

[51]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[52]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[53]  Rafail Ostrovsky,et al.  Efficient computation on oblivious RAMs , 1990, STOC '90.

[54]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[55]  Elham Sahebkar Khorasani Algorithms Sequential & Parallel: A Unified Approach , 2007, Scalable Comput. Pract. Exp..

[56]  Stratis Ioannidis,et al.  Privacy-preserving matrix factorization , 2013, CCS.

[57]  Ivan Damgård,et al.  Perfectly Secure Oblivious RAM Without Random Oracles , 2011, IACR Cryptol. ePrint Arch..

[58]  Michael Hicks,et al.  Wysteria: A Programming Language for Generic, Mixed-Mode Multiparty Computations , 2014, 2014 IEEE Symposium on Security and Privacy.

[59]  Stratis Ioannidis,et al.  Privacy tradeoffs in predictive analytics , 2014, SIGMETRICS '14.

[60]  A. Yao,et al.  Fair exchange with a semi-trusted third party (extended abstract) , 1997, CCS '97.

[61]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[62]  Andrew Chi-Chih Yao,et al.  Protocols for Secure Computations (Extended Abstract) , 1982, FOCS.

[63]  David Evans,et al.  Circuit Structures for Improving Efficiency of Security and Privacy Tools , 2013, 2013 IEEE Symposium on Security and Privacy.

[64]  Michael T. Goodrich,et al.  Oblivious RAM simulation with efficient worst-case access overhead , 2011, CCSW '11.

[65]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[66]  Joseph M. Hellerstein,et al.  Distributed GraphLab: A Framework for Machine Learning in the Cloud , 2012, Proc. VLDB Endow..

[67]  Hairong Kuang,et al.  The Hadoop Distributed File System , 2010, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST).

[68]  Michael T. Goodrich,et al.  Data-Oblivious Graph Drawing Model and Algorithms , 2012, ArXiv.

[69]  Aart J. C. Bik,et al.  Pregel: a system for large-scale graph processing , 2010, SIGMOD Conference.

[70]  Benny Pinkas,et al.  Fairplay - Secure Two-Party Computation System , 2004, USENIX Security Symposium.

[71]  Joseph Gonzalez,et al.  PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs , 2012, OSDI.

[72]  John E. Savage,et al.  Models of computation - exploring the power of computing , 1998 .

[73]  Stratis Ioannidis,et al.  Recommending with an agenda: active learning of private attributes using matrix factorization , 2013, RecSys '14.

[74]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[75]  Marcel Keller,et al.  Practical Covertly Secure MPC for Dishonest Majority - Or: Breaking the SPDZ Limits , 2013, ESORICS.

[76]  Peter Williams,et al.  Usable PIR , 2008, NDSS.

[77]  Jonathan Katz,et al.  Faster Secure Two-Party Computation Using Garbled Circuits , 2011, USENIX Security Symposium.

[78]  Kartik Nayak,et al.  Oblivious Data Structures , 2014, IACR Cryptol. ePrint Arch..