An Introduction to the Bio-logic of Artificial Creatures

In this chapter we emphasize the most crucial developments in the design of artificial creatures starting with the seminal work of Karl Sims presented at the SIGGRAPH’94 conference and ending with the latest research in virtual beings based on cell development.

[1]  P. E. Hotz 16 – Combining developmental processes and their physics in an artificial evolutionary system to evolve shapes , 2003 .

[2]  Jordan B. Pollack,et al.  Automatic design and manufacture of robotic lifeforms , 2000, Nature.

[3]  Inman Harvey,et al.  Evolutionary Robotics: A Survey of Applications and Problems , 1998, EvoRobot.

[4]  George Konidaris,et al.  METAMorph: Experimenting with Genetic Regulatory Networks for Artificial Development , 2005, ECAL.

[5]  Phil Husbands,et al.  Designed and Evolved Blueprints For Physical Self-Replicating Machines , 2004 .

[6]  Borys Wróbel,et al.  Evolution of the Morphology and Patterning of Artificial Embryos: Scaling the Tricolour Problem to the Third Dimension , 2009, ECAL.

[7]  Thomas Miconi,et al.  Evosphere: Evolutionary dynamics in a population of fighting virtual creatures , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[8]  Pattie Maes,et al.  Co-evolution of Pursuit and Evasion II: Simulation Methods and Results , 1996 .

[9]  Chrystopher L. Nehaniv,et al.  Evolution and Morphogenesis of Differentiated Multicellular Organisms - Autonomously Generated Diffusion Gradients for Positional Information , 2008, ALIFE.

[10]  Frank Dellaert,et al.  Toward an evolvable model of development for autonomous agent synthesis , 1994 .

[11]  Demetri Terzopoulos,et al.  Artificial fishes: Autonomous locomotion, perception, behavior, and learning in a simulated physical world , 1994 .

[12]  Hervé Luga,et al.  Three simulators for growing artificial creatures , 2010, IEEE Congress on Evolutionary Computation.

[13]  Chang-Hun Kim,et al.  Generating flying creatures using body-brain co-evolution , 2003, SCA '03.

[14]  Henrik Hautop Lund,et al.  Design of the ATRON lattice-based self-reconfigurable robot , 2006, Auton. Robots.

[15]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[16]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[17]  Andrew Adamatzky,et al.  Artificial Life Models in Software , 2005 .

[18]  Christoph Adami,et al.  Evolving Virtual Creatures and Catapults , 2007, Artificial Life.

[19]  W. Brian Arthur,et al.  On designing economic agents that behave like human agents , 1993 .

[20]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[21]  Hervé Luga,et al.  From Single Cell to Simple Creature Morphology and Metabolism , 2008, ALIFE.

[22]  Maciej Komosinski,et al.  Framsticks: Towards a Simulation of a Nature-Like World, Creatures and Evolution , 1999, ECAL.

[23]  Risto Miikkulainen,et al.  A Taxonomy for Artificial Embryogeny , 2003, Artificial Life.

[24]  Stefan Bornhofen,et al.  Life History Evolution of Virtual Plants: Trading Off Between Growth and Reproduction , 2006, PPSN.

[25]  Aude Billard,et al.  From Animals to Animats , 2004 .

[26]  Karl Sims,et al.  Evolving virtual creatures , 1994, SIGGRAPH.

[27]  Satoshi Murata,et al.  Self-Reconfigurable Robots Shape-Changing Cellular Robots Can Exceed Conventional Robot Flexibility , 2007 .

[28]  Jeffrey Ventrella,et al.  GenePool: Exploring the Interaction Between Natural Selection and Sexual Selection , 2005 .

[29]  Jordan B. Pollack,et al.  Three Generations of Automatically Designed Robots , 2001, Artificial Life.

[30]  Yves Duthen,et al.  A cell pattern generation model based on an extended artificial regulatory network , 2008, Biosyst..

[31]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[32]  Hod Lipson,et al.  A robotically reconfigurable truss , 2009, 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots.

[33]  René Doursat,et al.  Organically Grown Architectures: Creating Decentralized, Autonomous Systems by Embryomorphic Engineering , 2008, Organic Computing.

[34]  Edmund K. Burke,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[35]  Ying Zhang,et al.  Connecting and disconnecting for chain self-reconfiguration with PolyBot , 2002 .

[36]  Hod Lipson,et al.  Resilient Machines Through Continuous Self-Modeling , 2006, Science.

[37]  Maciej Komosinski,et al.  The World of Framsticks: Simulation, Evolution, Interaction , 2000, Virtual Worlds.

[38]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[39]  Hervé Luga,et al.  Morphogen Positioning by the Means of a Hydrodynamic Engine , 2010, ALIFE.

[40]  Chandana Paul,et al.  Evolutionary form-finding of tensegrity structures , 2005, GECCO '05.

[41]  W. Banzhaf Artificial Regulatory Networks and Genetic Programming , 2003 .

[42]  Jean-Arcady Meyer,et al.  Flapping-wing flight in bird-sized UAVs for the ROBUR project: from an evolutionary optimization to a real flapping-wing mechanism , 2007 .

[43]  Daniel Thalmann,et al.  The Direction of Synthetic Actors in the Film Rendez-Vous a Montreal , 1987, IEEE Computer Graphics and Applications.

[44]  Hod Lipson,et al.  Reconfiguration algorithms for robotically manipulatable structures , 2009, 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots.

[45]  Jordan B. Pollack,et al.  Evolution of generative design systems for modular physical robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[46]  Maciej Komosin´ski,et al.  The Framsticks system: versatile simulator of 3D agents and their evolution , 2003 .

[47]  Jordan B. Pollack,et al.  Automated assembly as situated development: using artificial ontogenies to evolve buildable 3-D objects , 2005, GECCO '05.

[48]  Hervé Luga,et al.  Cell2Organ: Self-repairing artificial creatures thanks to a healthy metabolism , 2009, 2009 IEEE Congress on Evolutionary Computation.

[49]  Martin Nilsson,et al.  Bridging Nonliving and Living Matter , 2003, Artificial Life.

[50]  Peter J. Bentley,et al.  Evolutionary Design By Computers , 1999 .

[51]  Wolfgang Banzhaf,et al.  Artificial ChemistriesA Review , 2001, Artificial Life.

[52]  Hod Lipson,et al.  Robotics: Self-reproducing machines , 2005, Nature.

[53]  Maciej Komosinski,et al.  Evolving free-form stick ski jumpers and their neural control systems , 2009 .

[54]  Takashi Ikegami,et al.  Model of Self-Replicating Cell Capable of Self-Maintenance , 1999, ECAL.

[55]  John E. Laird,et al.  Human-Level AI's Killer Application: Interactive Computer Games , 2000, AI Mag..

[56]  Karl Sims,et al.  Evolving 3d morphology and behavior by competition , 1994 .

[57]  Stefan Bornhofen,et al.  Competition and evolution in virtual plant communities: a new modeling approach , 2009, Natural Computing.

[58]  R. Pfeifer,et al.  Evolving Complete Agents using Artificial Ontogeny , 2003 .

[59]  Jean-Louis Deneubourg,et al.  The dynamics of collective sorting robot-like ants and ant-like robots , 1991 .

[60]  Wolfgang Banzhaf,et al.  Advances in Artificial Life , 2003, Lecture Notes in Computer Science.

[61]  Hod Lipson,et al.  Evolutionary Robotics and Open-Ended Design Automation , 2005 .

[62]  Torsten Reil,et al.  Dynamics of Gene Expression in an Artificial Genome - Implications for Biological and Artificial Ontogeny , 1999, ECAL.

[63]  Colm Massey,et al.  Recent Developments in the Evolution of Morphologies and Controllers for Physically Simulated Creatures , 2000, Artificial Life.

[64]  Christopher G. Langton,et al.  Artificial life II : video proceedings , 1992 .