Predicting formation of chemically graded metal/ceramic interfaces

[1]  S. Yadav,et al.  Atomically chemically graded Ti/TiN interface , 2022, Applied Surface Science.

[2]  S. Thanka Rajan,et al.  A comprehensive review on biocompatible thin films for biomedical application , 2021, Ceramics International.

[3]  J. Pearson,et al.  Antiferromagnetic Oxide Thin Films for Spintronic Applications , 2021, Coatings.

[4]  G. He,et al.  Performance and damage mechanism of TiN/ZrN nano-multilayer coatings based on different erosion angles , 2020 .

[5]  Jing Shi,et al.  Micro-nano multilayer structure design and solid particle erosion resistance performance of CrAlNx/CrAlN coating , 2020 .

[6]  Sooran Kim,et al.  Ab initio study of H, B, C, N, O, and self-interstitial atoms in hcp-Zr , 2019, Journal of Alloys and Compounds.

[7]  H. Barshilia,et al.  Nanolayered multilayer Ti/TiN coatings: Role of bi-layer thickness and annealing on solid particle erosion behaviour at elevated temperature , 2019, Surface and Coatings Technology.

[8]  C. S. Bhatia,et al.  Boosting contact sliding and wear protection via atomic intermixing and tailoring of nanoscale interfaces , 2019, Science Advances.

[9]  S. Alpay,et al.  Insight into point defects and impurities in titanium from first principles , 2018, npj Computational Materials.

[10]  P. Chu,et al.  Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering , 2017 .

[11]  S. N. Grigoriev,et al.  Comparative analysis of cutting properties and nature of wear of carbide cutting tools with multi-layered nano-structured and gradient coatings produced by using of various deposition methods , 2017 .

[12]  S. Grigoriev,et al.  Study of cracking mechanisms in multi-layered composite nano-structured coatings , 2017 .

[13]  G. Qin,et al.  A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility. , 2017, Materials science & engineering. C, Materials for biological applications.

[14]  J. Baldwin,et al.  Cr incorporated phase transformation in Y2O3 under ion irradiation , 2017, Scientific Reports.

[15]  J. Baldwin,et al.  What determines the interfacial configuration of Nb/Al2O3 and Nb/MgO interface , 2016, Scientific Reports.

[16]  S. Veldhuis,et al.  Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials , 2015, Scientific Reports.

[17]  W. Wunderlich The Atomistic Structure of Metal/Ceramic Interfaces Is the Key Issue for Developing Better Properties , 2014 .

[18]  Tong Liu,et al.  Structure evolution of Y2O3 nanoparticle/Fe composite during mechanical milling and annealing , 2013 .

[19]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[20]  Peng Ju,et al.  Pressure and temperature effects on NaCl-type transition metal carbide from first-principles calculations , 2010 .

[21]  J. Robertson Band alignment at metal–semiconductor and metal–oxide interfaces , 2010 .

[22]  A. Zunger,et al.  Many-body GW calculation of the oxygen vacancy in ZnO , 2009, 0910.2962.

[23]  Koichiro Inomata,et al.  Highly spin-polarized materials and devices for spintronics∗ , 2008, Science and technology of advanced materials.

[24]  H. Barshilia,et al.  Performance evaluation of reactive direct current unbalanced magnetron sputter deposited nanostructured TiN coated high-speed steel drill bits , 2007 .

[25]  Shun-Hui Yao,et al.  Evaluation of TiN/AlN nano-multilayer coatings on drills used for micro-drilling , 2005 .

[26]  Subra Suresh,et al.  Hertzian-crack suppression in ceramics with elastic-modulus-graded surfaces , 2005 .

[27]  H. Okamoto,et al.  O-Ti (Oxygen-Titanium) , 2001 .

[28]  S. Suresh,et al.  Graded Materials for Resistance to Contact Deformation and Damage , 2001, Science.

[29]  Eric Eisenbraun,et al.  Ultrathin Diffusion Barriers/Liners for Gigascale Copper Metallization , 2000 .

[30]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[33]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[34]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[35]  A. Matthews,et al.  Thick Ti/TiN multilayered coatings for abrasive and erosive wear resistance , 1994 .

[36]  J. Mayer,et al.  Reaction kinetics in the Ti/SiO2 system and Ti thickness dependence on reaction rate , 1994 .

[37]  Lr Lodewijk Wolff,et al.  The titanium-nitrogen system , 1985 .

[38]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[39]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[40]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[41]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[42]  M. Finnis,et al.  Ab initio calculations of metal/ceramic interfaces: what have we learned, what can we learn? , 1995 .

[43]  A. Evans,et al.  Structure and chemistry of metal/ceramic interfaces☆ , 1989 .