POD-Based Bicriterial Optimal Control by the Reference Point Method

Abstract In the present paper a bicriterial optimal control problem governed by a parabolic partial differential equation (PDE) and bilateral control constraints is considered. For the numerical optimization the reference point method is utilized. The PDE is discretized by a Galerkin approximation utilizing the method of proper orthogonal decomposition (POD). POD is a powerful approach to derive reduced-order approximations for evolution problems. Numerical examples illustrate the efficiency of the proposed strategy.

[1]  W. Stadler Multicriteria Optimization in Engineering and in the Sciences , 1988 .

[2]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[3]  K. F. Fong,et al.  HVAC system optimization for energy management by evolutionary programming , 2006 .

[4]  Joachim Bocker,et al.  Optimal energy management for a hybrid energy storage system combining batteries and double layer capacitors , 2009, 2009 IEEE Energy Conversion Congress and Exposition.

[5]  Andrew Kusiak,et al.  Multi-objective optimization of HVAC system with an evolutionary computation algorithm , 2011 .

[6]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[7]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[8]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[9]  S. Volkwein,et al.  Proper Orthogonal Decomposition for Linear-Quadratic Optimal Control , 2013 .

[10]  Stefan Volkwein,et al.  Multiobjective PDE-constrained optimization using the reduced-basis method , 2017, Advances in Computational Mathematics.

[11]  Michael Dellnitz,et al.  Multiobjective Optimal Control Methods for Fluid Flow Using Reduced Order Modeling , 2015, 1510.05819.

[12]  Stefan Volkwein,et al.  Reduced-Order Multiobjective Optimal Control of Semilinear Parabolic Problems , 2016, ENUMATH.

[13]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[14]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[15]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[16]  Stefan Volkwein,et al.  A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD , 2013 .

[17]  Lotfi A. Zadeh,et al.  Optimality and non-scalar-valued performance criteria , 1963 .