Modeling and learning contact dynamics in human motion

We propose a simple model of human motion as a switching linear dynamical system where the switches correspond to contact forces with the ground. This significantly improves the modeling performance when compared to simpler linear systems, with only marginal increase in complexity. We introduce a novel closed-form (non-iterative) algorithm to estimate the switches and learn the model parameters in between switches. We validate our model qualitatively by running simulations, and quantitatively by computing prediction errors that show significant improvements over previous approaches using linear models.

[1]  Jitendra Tugnait Detection and estimation for abruptly changing systems , 1981, CDC 1981.

[2]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[3]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficientsY. Bar-Shalom , 1988 .

[4]  Daniel E. Koditschek,et al.  A family of robot control strategies for intermittent dynamical environments , 1990, IEEE Control Systems Magazine.

[5]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[6]  Daniel E. Koditschek,et al.  A family of robot control strategies for intermittent dynamical environments , 1990 .

[7]  Dragan Stokic,et al.  Dynamics of Biped Locomotion , 1990 .

[8]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[9]  Christoph Bregler,et al.  Learning and recognizing human dynamics in video sequences , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  M. Coleman,et al.  The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.

[11]  Jitendra Malik,et al.  Tracking people with twists and exponential maps , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[12]  Vikram Krishnamurthy,et al.  Expectation maximization algorithms for MAP estimation of jump Markov linear systems , 1999, IEEE Trans. Signal Process..

[13]  C. Robert,et al.  Bayesian estimation of switching ARMA models , 1999, Journal of Econometrics.

[14]  Vladimir Pavlovic,et al.  Learning Switching Linear Models of Human Motion , 2000, NIPS.

[15]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[16]  Michael Isard,et al.  Learning and Classification of Complex Dynamics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Christophe Andrieu,et al.  Iterative algorithms for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[18]  Martijn Wisse,et al.  A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees , 2001, Int. J. Robotics Res..

[19]  Gregory D. Hager,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Terrence J. Sejnowski,et al.  Variational Learning for Switching State-Space Models , 2001 .

[21]  Yannick Aoustin,et al.  Optimal reference trajectories for walking and running of a biped robot , 2001, Robotica.

[22]  Stefano Soatto,et al.  Recognition of human gaits , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[23]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[24]  Harry Shum,et al.  Motion texture: a two-level statistical model for character motion synthesis , 2002, ACM Trans. Graph..

[25]  Feng Zhao,et al.  Monitoring and Diagnosis of Hybrid Systems Using Particle Filtering Methods , 2002 .

[26]  Okan Arikan,et al.  Interactive motion generation from examples , 2002, ACM Trans. Graph..

[27]  Stefano Soatto,et al.  A model (In)validation approach to gait recognition , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[28]  S. Sastry,et al.  An algebraic geometric approach to the identification of a class of linear hybrid systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[29]  Franck Plestan,et al.  Stable walking of a 7-DOF biped robot , 2003, IEEE Trans. Robotics Autom..

[30]  Andrew Blake,et al.  Probabilistic Tracking with Exemplars in a Metric Space , 2002, International Journal of Computer Vision.

[31]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[32]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH '08.