MC/DC automatic test input data generation

In regulated domain such as aerospace and in safety critical domains, software quality assurance is subject to strict regulation such as the RTCA DO-178B standard. Among other conditions, the DO-178B mandates for the satisfaction of the modified condition/decision coverage (MC/DC) testing criterion for software where failure condition may have catastrophic consequences. MC/DC is a white box testing criterion aiming at proving that all conditions involved in a predicate can influence the predicate value in the desired way. In this paper, we propose a novel fitness function inspired by chaining test data generation to efficiently generate test input data satisfying the MC/DC criterion. Preliminary results show the superiority of the novel fitness function that is able to avoid plateau leading to a behavior close to random test of traditional white box fitness functions.

[1]  Darrel C. Ince,et al.  The Automatic Generation of Test Data , 1987, Comput. J..

[3]  Bogdan Korel,et al.  The chaining approach for software test data generation , 1996, TSEM.

[4]  Paolo Tonella,et al.  Evolutionary testing of classes , 2004, ISSTA '04.

[5]  Leonardo Bottaci,et al.  Predicate Expression Cost Functions to Guide Evolutionary Search for Test Data , 2003, GECCO.

[6]  John A. Clark,et al.  Automated test‐data generation for exception conditions , 2000, Softw. Pract. Exp..

[7]  Phil McMinn,et al.  Search‐based software test data generation: a survey , 2004, Softw. Test. Verification Reliab..

[8]  Bogdan Korel,et al.  Dynamic method for software test data generation , 1992, Softw. Test. Verification Reliab..

[9]  Joachim Wegener,et al.  Evolutionary test environment for automatic structural testing , 2001, Inf. Softw. Technol..

[10]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[11]  André Baresel,et al.  Fitness Function Design To Improve Evolutionary Structural Testing , 2002, GECCO.

[12]  Phil McMinn,et al.  Hybridizing Evolutionary Testing with the Chaining Approach , 2004, GECCO.

[13]  David L. Spooner,et al.  Automatic Generation of Floating-Point Test Data , 1976, IEEE Transactions on Software Engineering.

[14]  John A. Clark,et al.  Automated program flaw finding using simulated annealing , 1998, ISSTA '98.

[15]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[16]  A. Jefferson Offutt,et al.  Coverage criteria for logical expressions , 2003, 14th International Symposium on Software Reliability Engineering, 2003. ISSRE 2003..

[17]  B. F. Jones,et al.  The Automatic Generation Of Software Test Data Sets Using Adaptive Search Techniques , 1970 .

[18]  Phil McMinn,et al.  Evolutionary Testing Using an Extended Chaining Approach , 2006, Evolutionary Computation.

[19]  Bryan F. Jones,et al.  Automatic structural testing using genetic algorithms , 1996, Softw. Eng. J..