Anatomy, Physiology, and Synaptic Responses of Rat Layer V Auditory Cortical Cells and Effects of Intracellular GABAABlockade

The varied extracortical targets of layer V make it an important site for cortical processing and output, which may be regulated by differences in the pyramidal neurons found there. Two populations...

[1]  D. Prince,et al.  Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features , 1990, The Journal of comparative neurology.

[2]  J. Winer,et al.  Layer V in rat auditory cortex: Projections to the inferior colliculus and contralateral cortex , 1988, Hearing Research.

[3]  Y. Kawaguchi,et al.  Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. , 1993, Journal of neurophysiology.

[4]  D. Barth,et al.  The functional anatomy of middle latency auditory evoked potentials , 1991, Brain Research.

[5]  B. Connors,et al.  Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor‐mediated responses in neocortex of rat and cat. , 1988, The Journal of physiology.

[6]  A. Mitani,et al.  Neuronal connections in the primary auditory cortex: An electrophysiological study in the cat , 1985, The Journal of comparative neurology.

[7]  D. Barth,et al.  The functional anatomy of middle-latency auditory evoked potentials: thalamocortical connections. , 1992, Journal of neurophysiology.

[8]  R. Guillery Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. , 1995, Journal of anatomy.

[9]  P. Smith Anatomy and physiology of multipolar cells in the rat inferior collicular cortex using the in vitro brain slice technique , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  E. G. Jones,et al.  Characteristics of intracellularly injected infragranular pyramidal neurons in cat primary auditory cortex. , 1992, Cerebral cortex.

[11]  R. S. Waters,et al.  In vivo intracellular recording and labeling of neurons in the forepaw barrel subfield (FBS) of rat somatosensory cortex: possible physiological and morphological substrates for reorganization. , 1996, Neuroreport.

[12]  D. Ferster,et al.  An intracellular analysis of geniculo‐cortical connectivity in area 17 of the cat. , 1983, The Journal of physiology.

[13]  C D Woody,et al.  Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. , 1993, Journal of neurophysiology.

[14]  Richard R. Fay,et al.  The Mammalian Auditory Pathway: Neuroanatomy , 1992, Springer Handbook of Auditory Research.

[15]  E. Welker,et al.  Morphology of corticothalamic terminals arising from the auditory cortex of the rat: A Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study , 1991, Hearing Research.

[16]  D. Ryugo,et al.  Pyramidal cells in primary auditory cortex project to cochlear nucleus in rat , 1996, Brain Research.

[17]  D Ferster,et al.  X- and Y-mediated synaptic potentials in neurons of areas 17 and 18 of cat visual cortex , 1990, Visual Neuroscience.

[18]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[19]  D. Barth,et al.  Three-dimensional analysis of auditory-evoked potentials in rat neocortex. , 1990, Journal of neurophysiology.

[20]  M Steriade,et al.  Electrophysiology of cat association cortical cells in vivo: intrinsic properties and synaptic responses. , 1993, Journal of neurophysiology.

[21]  R. Metherate,et al.  Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptors , 1991, Brain Research.

[22]  D. Whitteridge,et al.  Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17) , 1987, The Journal of comparative neurology.

[23]  S. Dudek,et al.  Developmental Down-Regulation of LTD in Cortical Layer IV and Its Independence of Modulation by Inhibition , 1996, Neuron.

[24]  S. Dudek,et al.  Intracellular blockade of inhibitory synaptic responses in visual cortical layer IV neurons. , 1996, Journal of neurophysiology.

[25]  J. Adams Heavy metal intensification of DAB-based HRP reaction product. , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[26]  J. Bourassa,et al.  Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer , 1995, Neuroscience.

[27]  William R. Softky,et al.  Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. , 1996, Journal of neurophysiology.

[28]  B. Connors,et al.  Repetitive burst-firing neurons in the deep layers of mouse somatosensory cortex , 1989, Neuroscience Letters.

[29]  K Kishi,et al.  Thalamocortical synapses between axons from the mediodorsal thalamic nucleus and pyramidal cells in the prelimbic cortex of the rat , 1995, The Journal of comparative neurology.

[30]  J. Winer The Functional Architecture of the Medial Geniculate Body and the Primary Auditory Cortex , 1992 .

[31]  J. A. Hirsch Synaptic integration in layer IV of the ferret striate cortex. , 1995, The Journal of physiology.

[32]  H. Swadlow Efferent neurons and suspected interneurons in binocular visual cortex of the awake rabbit: receptive fields and binocular properties. , 1988, Journal of neurophysiology.

[33]  E. Mugnaini,et al.  Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections , 1996, The Journal of comparative neurology.

[34]  Robert Miller,et al.  Cortico-thalamic interplay and the security of operation of neural assemblies and temporal chains in the cerebral cortex , 1996, Biological Cybernetics.

[35]  I. Whitfield,et al.  Classification of unit responses in the auditory cortex of the unanaesthetized and unrestrained cat , 1964, The Journal of physiology.

[36]  K. Murakami,et al.  The Convergence of Axon Terminals from the Mediodorsal Thalamic Nucleus and Ventral Tegmental Area on Pyramidal Cells in Layer V of the Rat Prelimbic Cortex , 1996, The European journal of neuroscience.

[37]  Laurence O Trussell,et al.  Cellular mechanisms for preservation of timing in central auditory pathways , 1997, Current Opinion in Neurobiology.

[38]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[39]  B. Connors,et al.  Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[41]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex , 1992, The Journal of comparative neurology.

[42]  G. Aghajanian,et al.  Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices , 1989, Synapse.

[43]  D. Ryugo,et al.  Projections from auditory cortex to the cochlear nucleus in rats: Synapses on granule cell dendrites , 1996, The Journal of comparative neurology.

[44]  H. Pockberger,et al.  Electrophysiological and morphological properties of rat motor cortex neurons in vivo , 1991, Brain Research.

[45]  R. Metherate,et al.  Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex , 1993, Synapse.

[46]  L C Katz,et al.  Local circuitry of identified projection neurons in cat visual cortex brain slices , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  Z. Gil,et al.  Properties of Convergent Thalamocortical and Intracortical Synaptic Potentials in Single Neurons of Neocortex , 1996, The Journal of Neuroscience.

[48]  Matthias Schmidt,et al.  Correlation of electrophysiology, morphology, and functions in corticotectal and corticopretectal projection neurons in rat visual cortex , 1998, Experimental Brain Research.

[49]  B. Connors,et al.  Laminar origins of inhibitory synaptic inputs to pyramidal neurons of the rat neocortex. , 1996, The Journal of physiology.

[50]  T. Wiesel,et al.  Patterns of synaptic input to layer 4 of cat striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  Jos J. Eggermont,et al.  Burst‐firing sharpens frequency‐tuning in primary auditory cortex , 1996, Neuroreport.

[52]  D Ferster,et al.  Synaptic excitation of neurones in area 17 of the cat by intracortical axon collaterals of cortico‐geniculate cells. , 1985, The Journal of physiology.

[53]  C. Blakemore,et al.  Pyramidal neurons in layer 5 of the rat visual cortex. II. Development of electrophysiological properties , 1994, The Journal of comparative neurology.

[54]  Y. Kubota,et al.  Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  G. Henry,et al.  Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. , 1979, Journal of neurophysiology.

[56]  Jun Yan,et al.  The midbrain creates and the thalamus sharpens echo-delay tuning for the cortical representation of target-distance information in the mustached bat , 1996, Hearing Research.

[57]  C. Blakemore,et al.  Pyramidal neurons in layer 5 of the rat visual cortex. III. Differential maturation of axon targeting, dendritic morphology, and electrophysiological properties , 1994, The Journal of comparative neurology.

[58]  P. Jen,et al.  Corticofugal control of central auditory sensitivity in the big brown bat, Eptesicus fuscus , 1996, Neuroscience Letters.

[59]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[60]  K. Murakami,et al.  An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus , 1998, Progress in Neurobiology.

[61]  H. Markram A network of tufted layer 5 pyramidal neurons. , 1997, Cerebral cortex.

[62]  I. Volkov,et al.  Formation of spike response to sound tones in cat auditory cortex neurons: Interaction of excitatory and inhibitory effects , 1991, Neuroscience.

[63]  B. Connors,et al.  Cellular Mechanisms of the Augmenting Response: Short-Term Plasticity in a Thalamocortical Pathway , 1996, The Journal of Neuroscience.

[64]  B L Finlay,et al.  Quantitative studies of single-cell properties in monkey striate cortex. IV. Corticotectal cells. , 1976, Journal of neurophysiology.

[65]  R. Metherate,et al.  Intrinsic electrophysiology of neurons in thalamorecipient layers of developing rat auditory cortex. , 1999, Brain research. Developmental brain research.

[66]  Norman M. Weinberger,et al.  Synaptic potentials and effects of amino acid antagonists in the auditory cortex , 1992, Brain Research Bulletin.

[67]  T. Hattori,et al.  Pyramidal cells in rat temporoauditory cortex project to both striatum and inferior colliculus , 1991, Brain Research Bulletin.

[68]  N. Mizuno,et al.  Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat , 1985, The Journal of comparative neurology.

[69]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[70]  J. Newman,et al.  Auditory Cortex of Squirrel Monkey: Response Patterns of Single Cells to Species-Specific Vocalizations , 1972, Science.

[71]  B. Connors,et al.  Electrophysiological properties of neocortical neurons in vitro. , 1982, Journal of neurophysiology.

[72]  B W Connors,et al.  Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. , 1989, Journal of neurophysiology.

[73]  C. Blakemore,et al.  Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets , 1994, The Journal of comparative neurology.

[74]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.