Stability on multiobjective dynamic programming problems with fuzzy parameters in the objective functions and in the constraints

Abstract The purpose of the paper is to investigate the stability on multiobjective dynamic programming problems with fuzzy parameters in the objective functions and in the constraints. These fuzzy parameters are characterized by fuzzy numbers. For such problems, concept and notion of the stability set of the first kind in parametric nonlinear programming problems are redefined and analyzed qualitatively under the concept of α-Pareto optimality. An algorithm for the determination of any subset of the parametric space which has the same corresponding α-Pareto optimal solution is proposed. A numerical example is given to illustrate the method developed in the paper.

[1]  Augustine O. Esogbue Dynamic programming, fuzzy sets, and the modeling of R&D management control systems , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  H. Moskowitz,et al.  Generalized dynamic programming for multicriteria optimization , 1990 .

[3]  M. Osman,et al.  Qualitative analysis of basic notions in parametric convex programming. I. Parameters in the constraints , 1977 .

[4]  Omar M. Saad Stability on multiobjective linear programming problems with fuzzy parameters , 1995, Fuzzy Sets Syst..

[5]  Mohamed Abd El-Hady Kassem,et al.  Stability of multiobjective nonlinear programming problems with fuzzy parameters in the constraints , 1995, Fuzzy Sets Syst..

[6]  Stability of multiobjective nonlinear programming problems with fuzzy parameters , 1993 .

[7]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[8]  Mahmoud A. Abo-Sinna,et al.  Decomposition of multiobjective programming problems by hybrid fuzzy-dynamic programming , 1993 .

[9]  R. Rockafellar,et al.  Duality and stability in extremum problems involving convex functions. , 1967 .

[10]  M. Sakawa,et al.  An interactive fuzzy satisficing method for generalized multiobjective linear programming problems with fuzzy parameters , 1990 .

[11]  R. Bellman Dynamic programming. , 1957, Science.

[12]  M. Osman,et al.  Qualitative analysis of basic notions in parametric convex programming. II. Parameters in the objective function , 1977 .

[13]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[14]  Masao Fukushima,et al.  Decomposition of multiple criteria mathematical programming problems by dynamic programming , 1979 .

[15]  K. Asai,et al.  Fuzzy linear programming problems with fuzzy numbers , 1984 .

[16]  Linus Schrage,et al.  Modeling and Optimization With Gino , 1986 .

[17]  Mahmoud A. Abo-Sinna,et al.  An algorithm for generating efficient solutions of multiobjective dynamic programming problems , 1995 .

[18]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[19]  Mahmoud A. Abo-Sinna,et al.  An algorithm for decomposing the parametric space in multiobjective dynamic programming problems , 1994 .

[20]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[21]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[22]  M. Sakawa,et al.  Interactive decision making for multiobjective nonlinear programming problems with fuzzy parameters , 1989 .

[23]  M. Zeleny Linear Multiobjective Programming , 1974 .