Oxide‐Based Solid‐State Batteries: A Perspective on Composite Cathode Architecture

The garnet‐type phase Li7La3Zr2O12 (LLZO) attracts significant attention as an oxide solid electrolyte to enable safe and robust solid‐state batteries (SSBs) with potentially high energy density. However, while significant progress has been made in demonstrating compatibility with Li metal, integrating LLZO into composite cathodes remains a challenge. The current perspective focuses on the critical issues that need to be addressed to achieve the ultimate goal of an all‐solid‐state LLZO‐based battery that delivers safety, durability, and pack‐level performance characteristics that are unobtainable with state‐of‐the‐art Li‐ion batteries. This perspective complements existing reviews of solid/solid interfaces with more emphasis on understanding numerous homo‐ and heteroionic interfaces in a pure oxide‐based SSB and the various phenomena that accompany the evolution of the chemical, electrochemical, structural, morphological, and mechanical properties of those interfaces during processing and operation. Finally, the insights gained from a comprehensive literature survey of LLZO–cathode interfaces are used to guide efforts for the development of LLZO‐based SSBs.

[1]  O. Guillon,et al.  All-Solid-State Li Batteries with NCM–Garnet-Based Composite Cathodes: The Impact of NCM Composition on Material Compatibility , 2022, ACS Applied Energy Materials.

[2]  Kwangnam Kim,et al.  Flexible machine-learning interatomic potential for simulating structural disordering behavior of Li7La3Zr2O12 solid electrolytes. , 2022, The Journal of chemical physics.

[3]  A. Latz,et al.  Elucidating the Role of Microstructure in Thiophosphate Electrolytes – a Combined Experimental and Theoretical Study of β‐Li3PS4 , 2022, Advanced science.

[4]  E. Wachsman,et al.  All Solid-State Li/LLZO/LCO Battery Enabled by Alumina Interfacial Coating , 2022, Journal of The Electrochemical Society.

[5]  Ngoc Thanh Thuy Tran,et al.  Study of LiCoO2/Li7La3Zr2O12:Ta Interface Degradation in All-Solid-State Lithium Batteries. , 2022, ACS applied materials & interfaces.

[6]  B. Yildiz,et al.  Avoiding CO2 Improves Thermal Stability at the Interface of Li7La3Zr2O12 Electrolyte with Layered Oxide Cathodes , 2022, Advanced Energy Materials.

[7]  D. Weber,et al.  Influence of Lithium Ion Kinetics, Particle Morphology and Voids on the Electrochemical Performance of Composite Cathodes for All-Solid-State Batteries , 2022, Journal of the Electrochemical Society.

[8]  T. Heo,et al.  Microstructural impacts on ionic conductivity of oxide solid electrolytes from a combined atomistic-mesoscale approach , 2021, npj Computational Materials.

[9]  M. Kovalenko,et al.  On the feasibility of all-solid-state batteries with LLZO as a single electrolyte , 2021, Scientific reports.

[10]  Adelaide M. Nolan,et al.  Computation-guided discovery of coating materials to stabilize the interface between lithium garnet solid electrolyte and high-energy cathodes for all-solid-state lithium batteries , 2021 .

[11]  T. Heo,et al.  Towards understanding particle rigid-body motion during solid-state sintering , 2021, Journal of the European Ceramic Society.

[12]  J. Janek,et al.  Understanding the Impact of Microstructure on Charge Transport in Polycrystalline Materials Through Impedance Modelling , 2021 .

[13]  L. Curtiss,et al.  Investigation of Delamination-Induced Performance Decay at the Cathode/LLZO Interface , 2021, Chemistry of Materials.

[14]  N. Imanishi,et al.  A Review on Li+/H+ Exchange in Garnet Solid Electrolytes: From Instability against Humidity to Sustainable Processing in Water , 2021, ChemSusChem.

[15]  Hao He,et al.  Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries , 2021 .

[16]  Pallab Barai,et al.  Investigating the Calcination and Sintering of Li7La3Zr2O12 (LLZO) Solid Electrolytes Using Operando Synchrotron X-ray Characterization and Mesoscale Modeling , 2021 .

[17]  Jeff Sakamoto,et al.  Transitioning solid-state batteries from lab to market: Linking electro-chemo-mechanics with practical considerations , 2021 .

[18]  Zachary D. Hood,et al.  Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes , 2021, Nature Materials.

[19]  B. Saruhan,et al.  Application of Ionic Liquids for Batteries and Supercapacitors , 2021, Materials.

[20]  M. Kovalenko,et al.  Break-Even Analysis of All-Solid-State Batteries with Li-Garnet Solid Electrolytes , 2021, ACS Energy Letters.

[21]  Felix H. Richter,et al.  Influence of Crystallinity of Lithium Thiophosphate Solid Electrolytes on the Performance of Solid‐State Batteries , 2021, Advanced Energy Materials.

[22]  E. Wachsman,et al.  Effect of the 3D Structure and Grain Boundaries on Lithium Transport in Garnet Solid Electrolytes , 2021 .

[23]  Zonghai Chen,et al.  Unveiling decaying mechanism through quantitative structure-activity relationship in electrolytes for lithium-ion batteries , 2021, Nano Energy.

[24]  Felix H. Richter,et al.  Editors’ Choice—Quantifying the Impact of Charge Transport Bottlenecks in Composite Cathodes of All-Solid-State Batteries , 2021 .

[25]  O. Guillon,et al.  Modelling electro-chemical induced stresses in all-solid-state batteries: Anisotropy effects in cathodes and cell design optimisation , 2021 .

[26]  Felix H. Richter,et al.  Polycrystalline and Single Crystalline NCM Cathode Materials—Quantifying Particle Cracking, Active Surface Area, and Lithium Diffusion , 2021, Advanced Energy Materials.

[27]  Steve W. Martin,et al.  Challenges for and Pathways toward Li-Metal-Based All-Solid-State Batteries , 2021, ACS Energy Letters.

[28]  S. Uhlenbruck,et al.  Physical Vapor Deposition in Solid‐State Battery Development: From Materials to Devices , 2021, Advanced science.

[29]  Zonghai Chen,et al.  Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number , 2021 .

[30]  J. Sann,et al.  The Working Principle of a Li2CO3/LiNbO3 Coating on NCM for Thiophosphate-Based All-Solid-State Batteries , 2021 .

[31]  Claudio V. Di Leo,et al.  Modeling of Chemo-Mechanical Multi-Particle Interactions in Composite Electrodes for Liquid and Solid-State Li-Ion Batteries , 2021 .

[32]  K. Tantratian,et al.  Unraveling the Li Penetration Mechanism in Polycrystalline Solid Electrolytes , 2021, Advanced Energy Materials.

[33]  Felix H. Richter,et al.  On the Additive Microstructure in Composite Cathodes and Alumina-Coated Carbon Microwires for Improved All-Solid-State Batteries , 2021 .

[34]  E. Duoss,et al.  Exploring the relationship between solvent-assisted ball milling, particle size, and sintering temperature in garnet-type solid electrolytes , 2021, Journal of Power Sources.

[35]  Feng Wu,et al.  Tuning a compatible interface with LLZTO integrated on cathode material for improving NCM811/LLZTO solid-state battery , 2021 .

[36]  Zachary D. Hood,et al.  Processing thin but robust electrolytes for solid-state batteries , 2021, Nature Energy.

[37]  Likun Zhu,et al.  Chemo-mechanical modeling of stress evolution in all-solid-state lithium-ion batteries using synchrotron transmission X-ray microscopy tomography , 2021, Journal of Power Sources.

[38]  Chih‐Long Tsai,et al.  Low temperature sintering of fully inorganic all-solid-state batteries – Impact of interfaces on full cell performance , 2021 .

[39]  J. Sann,et al.  Lithium‐Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solid‐State Batteries , 2020, Angewandte Chemie.

[40]  A. Tiwari,et al.  Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte , 2020, Communications Materials.

[41]  J. Sann,et al.  Kinetic versus Thermodynamic Stability of LLZO in Contact with Lithium Metal , 2020 .

[42]  Zachary D. Hood,et al.  Lithium-film ceramics for solid-state lithionic devices , 2020, Nature Reviews Materials.

[43]  Liyi Shi,et al.  Ionic liquids for high performance lithium metal batteries , 2020, Journal of Energy Chemistry.

[44]  Bingbing Chen,et al.  In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries , 2020, Nature Communications.

[45]  K. Kang,et al.  Interfacial Engineering in a Cathode Composite Based on Garnet‐Type Solid‐State Li‐Ion Battery with High Voltage Cycling , 2020 .

[46]  Lingping Kong,et al.  Solid‐State Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces , 2020, Advanced Energy Materials.

[47]  B. Yildiz,et al.  Thermally Driven Interfacial Degradation between Li7La3Zr2O12 Electrolyte and LiNi0.6Mn0.2Co0.2O2 Cathode , 2020 .

[48]  V. Aravindan,et al.  LiBO2-modified LiCoO2 as an efficient cathode with garnet framework Li6.75La3Zr1.75Nb0.25O12 electrolyte toward building all-solid-state lithium battery for high-temperature operation , 2020 .

[49]  N. Dasgupta,et al.  Electrochemical and Surface Chemistry Analysis of Lithium Lanthanum Zirconium Tantalum Oxide (LLZTO)/Liquid Electrolyte (LE) Interfaces , 2020 .

[50]  Yukihiro Okuno,et al.  Comparative Study on Sulfide and Oxide Electrolyte Interfaces with Cathodes in All-Solid-State Battery via First-Principles Calculations , 2020 .

[51]  Shaofei Wang,et al.  High Voltage Stable Polyoxalate Catholyte with Cathode Coating for All‐Solid‐State Li‐Metal/NMC622 Batteries , 2020, Advanced Energy Materials.

[52]  A. Llordés,et al.  Importance of Composite Electrolyte Processing to Improve the Kinetics and Energy Density of Li Metal Solid-State Batteries , 2020 .

[53]  Feixiang Wu,et al.  Lithium metal anodes: Present and future , 2020, Journal of Energy Chemistry.

[54]  Changhong Wang,et al.  Single crystal cathodes enabling high-performance all-solid-state lithium-ion batteries , 2020 .

[55]  H. Kwon,et al.  Mixed Ionic–Electronic Conductor of Perovskite LixLayMO3−δ toward Carbon‐Free Cathode for Reversible Lithium–Air Batteries , 2020, Advanced Energy Materials.

[56]  Felix H. Richter,et al.  Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. , 2020, Chemical reviews.

[57]  A. Tiwari,et al.  Fast charge transfer across the Li7La3Zr2O12 solid electrolyte / LiCoO2 cathode interface enabled by an interphase-engineered all-thin-film architecture. , 2020, ACS applied materials & interfaces.

[58]  Felix H. Richter,et al.  Influence of Carbon Additives on the Decomposition Pathways in Cathodes of Lithium Thiophosphate-Based All-Solid-State Batteries , 2020 .

[59]  Erik A. Wu,et al.  Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. , 2020, Chemical reviews.

[60]  L. Curtiss,et al.  The Role of Local Inhomogeneities on Dendrite Growth in LLZO-Based Solid Electrolytes , 2020, Journal of The Electrochemical Society.

[61]  D. Weber,et al.  Influence of NCM Particle Cracking on Kinetics of Lithium-Ion Batteries with Liquid or Solid Electrolyte , 2020, Journal of The Electrochemical Society.

[62]  Y. Qi,et al.  Evaluation of The Electrochemo-Mechanically Induced Stress in All-Solid-State Li-Ion Batteries , 2020 .

[63]  Weidong Zhou,et al.  Rational Design of Mixed Electronic‐Ionic Conducting Ti‐Doping Li7La3Zr2O12 for Lithium Dendrites Suppression , 2020, Advanced Functional Materials.

[64]  Jessica K. Dudoff,et al.  Cathode interface compatibility of amorphous LiMn2O4 (LMO) and Li7La3Zr2O12 (LLZO) characterized with thin-film solid state electrochemical cells. , 2020, ACS applied materials & interfaces.

[65]  J. Sakamoto,et al.  Correlating the effect of dopant type (Al, Ga, Ta) on the mechanical and electrical properties of hot-pressed Li-garnet electrolyte , 2020 .

[66]  Yongxing Shen,et al.  Fracture behavior in battery materials , 2020, Journal of Physics: Energy.

[67]  Adelaide M. Nolan,et al.  Classical and Emerging Characterization Techniques for Investigation of Ion Transport Mechanisms in Crystalline Fast Ionic Conductors. , 2020, Chemical reviews.

[68]  Zhengcheng Zhang,et al.  Stabilized Electrode/Electrolyte Interphase by a Saturated Ionic Liquid Electrolyte for High-Voltage NMC532/Si-Graphite Cells. , 2020, ACS applied materials & interfaces.

[69]  Adelaide M. Nolan,et al.  Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. , 2020, Chemical reviews.

[70]  Asma Sharafi,et al.  Li Penetration in Ceramic Solid Electrolytes: Operando Microscopy Analysis of Morphology, Propagation, and Reversibility , 2020, Matter.

[71]  Adelaide M. Nolan,et al.  Stable Thiophosphate-based All-Solid-State Lithium Batteries through Conformally Interfacial Nano Coating. , 2019, Nano letters (Print).

[72]  K. Zaghib,et al.  Discovering the Influence of Lithium Loss on Garnet Li7La3Zr2O12 Electrolyte Phase Stability , 2020 .

[73]  Pengfei Liu,et al.  Computational Modeling of Heterogeneity of Stress, Charge, and Cyclic Damage in Composite Electrodes of Li-Ion Batteries , 2020 .

[74]  Mao‐xiang Jing,et al.  Improved Interface Stability and Room-temperature Performance of Solid-State Lithium Battery by Integrating Cathode/Electrolyte and Graphite Coating. , 2020, ACS applied materials & interfaces.

[75]  Ellen Ivers-Tiffée,et al.  Benchmarking the performance of all-solid-state lithium batteries , 2020 .

[76]  D. Weber,et al.  Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries. , 2020, ACS applied materials & interfaces.

[77]  Jiawei Yan,et al.  Adding salt to expand voltage window of humid ionic liquids , 2020, Nature Communications.

[78]  Griffin L. Godbey,et al.  The Effects of Constriction Factor and Geometric Tortuosity on Li‐Ion Transport in Porous Solid‐State Li‐Ion Electrolytes , 2020, Advanced Functional Materials.

[79]  Bingxin Huang,et al.  Synthesis of mixed ionic and electronic conducting garnet with doping of transition elements (Fe, Co, Ni) , 2020 .

[80]  Felix H. Richter,et al.  Analysis of Interfacial Effects in All-Solid-State Batteries with Thiophosphate Solid Electrolytes. , 2020, ACS applied materials & interfaces.

[81]  Suojiang Zhang,et al.  The Effect of Concentration of Lithium Salt on the Structural and Transport Properties of Ionic Liquid-Based Electrolytes , 2020, Frontiers in Chemistry.

[82]  F. Ciucci,et al.  Electro-chemo-mechanical modeling of solid-state batteries , 2020, 2004.09098.

[83]  E. A. Il’ina,et al.  Studying of superionic solid electrolyte Li7La3Zr2O12 stability by means of chemical thermodynamics for application in all-solid-state batteries , 2020 .

[84]  Guoying Chen,et al.  All-Solid-State Batteries Using Rationally Designed Garnet Electrolyte Frameworks , 2020, ACS Applied Energy Materials.

[85]  Felix H. Richter,et al.  The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte , 2020, Joule.

[86]  N. Tamura,et al.  Scalable freeze tape casting fabrication and pore structure analysis of 3D LLZO solid-state electrolytes. , 2019, ACS applied materials & interfaces.

[87]  C. Yoon,et al.  Ni‐Rich Layered Cathode Materials with Electrochemo‐Mechanically Compliant Microstructures for All‐Solid‐State Li Batteries , 2019, Advanced Energy Materials.

[88]  G. Ceder,et al.  High Active Material Loading in All‐Solid‐State Battery Electrode via Particle Size Optimization , 2019, Advanced Energy Materials.

[89]  M. Smith,et al.  Phase-Field Simulation of Grain Boundary Evolution In Microstructures Containing Second-Phase Particles with Heterogeneous Thermal Properties , 2019, Scientific Reports.

[90]  N. Benedek,et al.  Thermal expansion in insulating solids from first principles , 2019, Journal of Applied Physics.

[91]  T. Thompson,et al.  Deformation and Stresses in Solid-State Composite Battery Cathodes , 2019, ECS Meeting Abstracts.

[92]  Z. Wen,et al.  Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte , 2019, Energy Storage Materials.

[93]  Felix H. Richter,et al.  Properties of the Interphase formed between Argyrodite-type Li6PS5Cl and Polymer-based PEO10:LiTFSI. , 2019, ACS applied materials & interfaces.

[94]  Liquan Chen,et al.  Li-free Cathode Materials for High Energy Density Lithium Batteries , 2019, Joule.

[95]  Feixiang Wu,et al.  3D Honeycomb Architecture Enables a High‐Rate and Long‐Life Iron (III) Fluoride–Lithium Battery , 2019, Advanced materials.

[96]  Adelaide M. Nolan,et al.  Solid-State Chemistries Stable with High-Energy Cathodes for Lithium-Ion Batteries , 2019, ACS Energy Letters.

[97]  Changhong Wang,et al.  H2O-Mediated Synthesis of Superionic Halide Solid Electrolyte. , 2019, Angewandte Chemie.

[98]  Y. Aihara,et al.  Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach , 2019, Energy Storage Materials.

[99]  M. Wagemaker,et al.  Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes , 2019, Nature Materials.

[100]  Long-Qing Chen,et al.  Interfacial Electronic Properties Dictate Li Dendrite Growth in Solid Electrolytes , 2019, Chemistry of Materials.

[101]  Christian Masquelier,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[102]  Z. Wen,et al.  Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal , 2019, Ceramics International.

[103]  Feng Li,et al.  Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. , 2019, Small.

[104]  O. Guillon,et al.  High-pressure field assisted sintering of half-cell for all-solid-state battery , 2019, Materials Letters.

[105]  Xiaoting Lin,et al.  In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries , 2019, Nano Energy.

[106]  M. Göken,et al.  A review of experimental approaches to fracture toughness evaluation at the micro-scale , 2019, Materials & Design.

[107]  J. Coleman,et al.  High areal capacity battery electrodes enabled by segregated nanotube networks , 2019, Nature Energy.

[108]  M. Doeff,et al.  Structural Degradation of Layered Cathode Materials in Lithium-Ion Batteries Induced by Ball Milling , 2019, Journal of The Electrochemical Society.

[109]  L. Curtiss,et al.  Mechanical Stress Induced Current Focusing and Fracture in Grain Boundaries , 2019, Journal of The Electrochemical Society.

[110]  J. Rupp,et al.  A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films , 2019, Nature Energy.

[111]  C. Nan,et al.  Solid Garnet Batteries , 2019, Joule.

[112]  Yan Wang,et al.  Computational Screening of Cathode Coatings for Solid-State Batteries , 2019, Joule.

[113]  J. Sann,et al.  Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry , 2019, Chemistry of Materials.

[114]  W. Lu,et al.  A Comprehensive Experimental and Modeling Study on Dissolution in Li-Ion Batteries , 2019, Journal of The Electrochemical Society.

[115]  J. Janek,et al.  Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes , 2019, Chemistry of Materials.

[116]  Felix H. Richter,et al.  Amorphous versus Crystalline Li3PS4: Local Structural Changes during Synthesis and Li Ion Mobility , 2019, The Journal of Physical Chemistry C.

[117]  P. Johansson,et al.  Ionic Liquids: A Simple Model to Predict Ion Conductivity Based on DFT Derived Physical Parameters , 2019, Front. Chem..

[118]  Zonghai Chen,et al.  Identifying Active Sites for Parasitic Reactions at the Cathode-Electrolyte Interface. , 2019, The journal of physical chemistry letters.

[119]  M. Doeff,et al.  Mesoscale Chemomechanical Interplay of the LiNi0.8Co0.15Al0.05O2 Cathode in Solid-State Polymer Batteries , 2019, Chemistry of Materials.

[120]  Xianghui Xiao,et al.  Tortuosity Effects in Garnet-Type Li7La3Zr2O12 Solid Electrolytes. , 2019, ACS applied materials & interfaces.

[121]  Qian Sun,et al.  Mitigating the Interfacial Degradation in Cathodes for High-Performance Oxide-Based Solid-State Lithium Batteries. , 2019, ACS applied materials & interfaces.

[122]  Dongwook Shin,et al.  Electrochemical Properties of Composite Cathode Using Bimodal Sized Electrolyte for All-Solid-State Batteries , 2019, Journal of The Electrochemical Society.

[123]  D. Weber,et al.  Microstructural Modeling of Composite Cathodes for All-Solid-State Batteries , 2018, The Journal of Physical Chemistry C.

[124]  Yutao Li,et al.  Double‐Layer Polymer Electrolyte for High‐Voltage All‐Solid‐State Rechargeable Batteries , 2018, Advanced materials.

[125]  Yang Shen,et al.  Effects of Li6.75La3Zr1.75Ta0.25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes , 2018, Solid State Ionics.

[126]  A. Jossen,et al.  Modeling and simulation of inhomogeneities in a 18650 nickel-rich, silicon-graphite lithium-ion cell during fast charging , 2018, Journal of Power Sources.

[127]  Andrew M. Colclasure,et al.  Resolving the discrepancy in tortuosity factor estimation for Li-Ion battery electrodes through micro-macro modeling and experiment , 2018 .

[128]  Kun Fu,et al.  All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture , 2018, Energy Storage Materials.

[129]  B. Polzin,et al.  Cost of automotive lithium-ion batteries operating at high upper cutoff voltages , 2018, Journal of Power Sources.

[130]  S. Indris,et al.  Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+ xP1- xGe xS5I for All-Solid-State Batteries. , 2018, Journal of the American Chemical Society.

[131]  Piero Pianetta,et al.  Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries , 2018, Nano Energy.

[132]  B. Kirchner,et al.  Molecular Dynamics Simulations of Lithium-Doped Ionic-Liquid Electrolytes. , 2018, The journal of physical chemistry. B.

[133]  Chunsheng Wang,et al.  Mechanism Study on the Interfacial Stability of a Lithium Garnet-Type Oxide Electrolyte against Cathode Materials , 2018, ACS Applied Energy Materials.

[134]  Yong Lu,et al.  Electrolyte and Interface Engineering for Solid-State Sodium Batteries , 2018, Joule.

[135]  Kun Fu,et al.  3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries , 2018, Energy Storage Materials.

[136]  M. Nakayama,et al.  Molecular Dynamics Studies on the Lithium Ion Conduction Behaviors Depending on Tilted Grain Boundaries with Various Symmetries in Garnet-Type Li7La3Zr2O12 , 2018, The Journal of Physical Chemistry C.

[137]  S. Miller,et al.  Dense freeze‐cast Li 7 La 3 Zr 2 O 12 solid electrolytes with oriented open porosity and contiguous ceramic scaffold , 2018, Journal of the American Ceramic Society.

[138]  Yunhui Gong,et al.  Mixed ionic-electronic conductor enabled effective cathode-electrolyte interface in all solid state batteries , 2018, Nano Energy.

[139]  Y. Chiang,et al.  Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li7La3Zr2O12 Electrolyte and LiCoO2 Cathode , 2018, Chemistry of Materials.

[140]  Lauren E. Marbella,et al.  Niobium tungsten oxides for high-rate lithium-ion energy storage , 2018, Nature.

[141]  Kun Fu,et al.  Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries , 2018, Materials Today.

[142]  Y. Qi,et al.  Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites , 2018, Journal of Power Sources.

[143]  Felix H. Richter,et al.  Li+-Ion Dynamics in β-Li3PS4 Observed by NMR: Local Hopping and Long-Range Transport , 2018, The Journal of Physical Chemistry C.

[144]  Chih‐Long Tsai,et al.  High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling. , 2018, ACS applied materials & interfaces.

[145]  Li Lu,et al.  Review on solid electrolytes for all-solid-state lithium-ion batteries , 2018, Journal of Power Sources.

[146]  P. Kaghazchi,et al.  Theoretical study of cubic-Li_7La_3Zr_2O_12(001)/LiCoO_2(10-14) interface , 2018 .

[147]  Arumugam Manthiram,et al.  Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable , 2018, Advanced Functional Materials.

[148]  Chih‐Long Tsai,et al.  Challenges regarding thin film deposition of garnet electrolytes for all-solid-state lithium batteries with high energy density , 2018, Ionics.

[149]  Ya‐Xia Yin,et al.  Mitigating Interfacial Potential Drop of Cathode-Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries. , 2018, Journal of the American Chemical Society.

[150]  Liangbing Hu,et al.  3D‐Printing Electrolytes for Solid‐State Batteries , 2018, Advanced materials.

[151]  Donald J. Siegel,et al.  Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review , 2018, Ionics.

[152]  Xianghui Xiao,et al.  Effect of Pore Connectivity on Li Dendrite Propagation within LLZO Electrolytes Observed with Synchrotron X-ray Tomography , 2018 .

[153]  Yunhui Gong,et al.  Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework , 2018, Proceedings of the National Academy of Sciences.

[154]  Xiulin Fan,et al.  Interphase Engineering Enabled All-Ceramic Lithium Battery , 2018 .

[155]  X. Yang,et al.  Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids , 2018, Front. Chem..

[156]  Zhiwei Hu,et al.  Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity , 2018 .

[157]  Shengbo Zhang Problem, Status, and Possible Solutions for Lithium Metal Anode of Rechargeable Batteries , 2018 .

[158]  K. Smith,et al.  Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes. , 2018, ACS applied materials & interfaces.

[159]  Christian Masquelier,et al.  Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries. , 2018, Journal of the American Chemical Society.

[160]  Feng Li,et al.  More Reliable Lithium‐Sulfur Batteries: Status, Solutions and Prospects , 2017, Advanced materials.

[161]  Donald J. Siegel,et al.  Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li7La3Zr2O12 (LLZO) , 2017 .

[162]  K. Mitsuishi,et al.  Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte , 2017 .

[163]  Yang Shen,et al.  Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. , 2017, Journal of the American Chemical Society.

[164]  Y. Ji,et al.  Phase-Field Based Multiscale Modeling of Heterogeneous Solid Electrolytes: Applications to Nanoporous Li3PS4. , 2017, ACS applied materials & interfaces.

[165]  Yang Shen,et al.  Garnet-type oxide electrolyte with novel porous-dense bilayer configuration for rechargeable all-solid-state lithium batteries , 2017, Ionics.

[166]  J. Sakamoto,et al.  Mechanical and physical properties of LiNi0.33Mn0.33Co0.33O2 (NMC) , 2017 .

[167]  J. Maier,et al.  Ion conduction and redistribution at grain boundaries in oxide systems , 2017 .

[168]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[169]  Benjamin J Morgan,et al.  Lattice-geometry effects in garnet solid electrolytes: a lattice-gas Monte Carlo simulation study , 2017, Royal Society Open Science.

[170]  T. Leichtweiss,et al.  Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes , 2017 .

[171]  Biyi Xu,et al.  Stabilization of Garnet/Liquid Electrolyte Interface Using Superbase Additives for Hybrid Li Batteries. , 2017, ACS applied materials & interfaces.

[172]  J. Sakamoto,et al.  Elastic properties of lithium cobalt oxide (LiCoO2) , 2017 .

[173]  Chih‐Long Tsai,et al.  Cathode-electrolyte material interactions during manufacturing of inorganic solid-state lithium batteries , 2017, Journal of Electroceramics.

[174]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[175]  Hui Wu,et al.  High performance lithium metal anode: Progress and prospects , 2017 .

[176]  K. Leung First-Principles Modeling of Mn(II) Migration above and Dissolution from LixMn2O4 (001) Surfaces , 2017, 1707.02489.

[177]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[178]  K. Brinkman,et al.  Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors , 2017 .

[179]  J. Haruyama,et al.  Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/Sulfide Electrolyte Interface in a Solid-State Battery. , 2017, ACS applied materials & interfaces.

[180]  S. Son,et al.  Effect of Li3BO3 Additive on Densification and Ion Conductivity of Garnet-Type Li7La3Zr2O12 Solid Electrolytes of All-Solid-State Lithium-Ion Batteries , 2016 .

[181]  Yutao Li,et al.  Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12 , 2016 .

[182]  J. Rupp,et al.  Interface‐Engineered All‐Solid‐State Li‐Ion Batteries Based on Garnet‐Type Fast Li+ Conductors , 2016 .

[183]  S. Uhlenbruck,et al.  Sol-gel synthesis of thin solid Li7La3Zr2O12 electrolyte films for Li-ion batteries , 2016 .

[184]  Q. Ma,et al.  About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature. , 2016, ACS applied materials & interfaces.

[185]  Steven D. Lacey,et al.  Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. , 2016, Journal of the American Chemical Society.

[186]  Yang Shen,et al.  Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials , 2016 .

[187]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[188]  Yang Shen,et al.  Achieving high capacity in bulk-type solid-state lithium ion battery based on Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 electrolyte: Interfacial resistance , 2016 .

[189]  Y. Chiang,et al.  Smoothed Boundary Method for simulating bulk and grain boundary transport in complex polycrystalline microstructures , 2016 .

[190]  T. Zhao,et al.  A High-Performance Solid-State LIthium-Oxygen Battery with a Ceramic-Carbon Nanostructured Electrode , 2016 .

[191]  Bingyun Li,et al.  Capacity Fade Analysis of Sulfur Cathodes in Lithium–Sulfur Batteries , 2016, Advanced science.

[192]  E. Ivers-Tiffée,et al.  Assessment of all-solid-state lithium-ion batteries , 2016, Journal of Power Sources.

[193]  Yasuaki Kawai,et al.  Three-Dimensional Bicontinuous Nanocomposite from a Self-Assembled Block Copolymer for a High-Capacity All-Solid-State Lithium Battery Cathode , 2016 .

[194]  M. Chi,et al.  Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries , 2016 .

[195]  T. Leichtweiss,et al.  Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. , 2016, Nature chemistry.

[196]  N. Imanishi,et al.  Lithium Dendrite Formation on a Lithium Metal Anode from Liquid, Polymer and Solid Electrolytes , 2016 .

[197]  J. Sakamoto,et al.  The Effect of Relative Density on the Mechanical Properties of Hot-Pressed Cubic Li 7 la 3 Zr 2 O 12 , 2016 .

[198]  Chih‐Long Tsai,et al.  Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries , 2016 .

[199]  Victor E. Brunini,et al.  Mechanical and electrochemical response of a LiCoO2 cathode using reconstructed microstructures , 2016 .

[200]  Biyi Xu,et al.  Multistep sintering to synthesize fast lithium garnets , 2016 .

[201]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[202]  Donald J. Siegel,et al.  Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO) , 2016 .

[203]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[204]  N. Imanishi,et al.  Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12 , 2015 .

[205]  J. Vaughey,et al.  Thermal expansion in the garnet-type solid electrolyte (Li7−xAlx/3)La3Zr2O12 as a function of Al content , 2015 .

[206]  Arnulf Latz,et al.  Thermodynamically Consistent Model for Space-Charge-Layer Formation in a Solid Electrolyte , 2015 .

[207]  Yang Shen,et al.  Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte , 2015 .

[208]  Asma Sharafi,et al.  A Tale of Two Sites: On Defining the Carrier Concentration in Garnet‐Based Ionic Conductors for Advanced Li Batteries , 2015 .

[209]  W. Richards,et al.  First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets , 2015 .

[210]  M. Wilkening,et al.  Site Occupation of Ga and Al in Stabilized Cubic Li7–3(x+y)GaxAlyLa3Zr2O12 Garnets As Deduced from 27Al and 71Ga MAS NMR at Ultrahigh Magnetic Fields , 2015 .

[211]  T. Thompson,et al.  Microstructure and Li‐Ion Conductivity of Hot‐Pressed Cubic Li7La3Zr2O12 , 2015 .

[212]  E. Wachsman,et al.  Highly conductive Li garnets by a multielement doping strategy. , 2015, Inorganic chemistry.

[213]  Lei Cheng,et al.  Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. , 2015, ACS applied materials & interfaces.

[214]  Y. Iriyama,et al.  In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery , 2014 .

[215]  S. Ohta,et al.  Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery , 2014 .

[216]  Liyuan Han,et al.  Space–Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery , 2014 .

[217]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[218]  J. Sakamoto,et al.  Resolving the Grain Boundary and Lattice Impedance of Hot-Pressed Li7La3Zr2O12 Garnet Electrolytes , 2014 .

[219]  J. Sakamoto,et al.  Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12 , 2013, Nanotechnology.

[220]  Shogo Komagata,et al.  All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing , 2013 .

[221]  Daniel P. Abraham,et al.  Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy , 2013 .

[222]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[223]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[224]  J. Janek,et al.  Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium , 2013 .

[225]  H. Nozaki,et al.  Thermal expansion in lithium manganese oxide spinels Li[LixMn2−x]O4 with 0 ≤ x ≤ 1/3 , 2013 .

[226]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[227]  R. Bouchet,et al.  Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups , 2012 .

[228]  V. Thangadurai,et al.  Enhancing Li Ion Conductivity of Garnet-Type Li5La3Nb2O12 by Y- and Li-Codoping: Synthesis, Structure, Chemical Stability, and Transport Properties , 2012 .

[229]  Jeff Sakamoto,et al.  Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 , 2012 .

[230]  Tetsuro Kobayashi,et al.  Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte , 2012 .

[231]  J. Sakamoto,et al.  Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12 , 2012, Journal of Materials Science.

[232]  Jeff Wolfenstine,et al.  The Role of Al and Li Concentration on the Formation of Cubic Garnet Solid Electrolyte of Nominal Composition Li7La3Zr2O12 , 2012 .

[233]  Boris Kozinsky,et al.  From order to disorder: The structure of lithium-conducting garnets Li7 − xLa3TaxZr2 − xO12 (x = 0–2) , 2012 .

[234]  Maureen H. Tang,et al.  Effect of molecular weight on conductivity of polymer electrolytes , 2011 .

[235]  N. Dudney,et al.  Mechanical characterization of Lipon films using nanoindentation , 2011 .

[236]  Alexander Kuhn,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[237]  Ying Jin,et al.  Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method , 2011 .

[238]  T. Yoshida,et al.  Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte , 2011 .

[239]  J. Kortus,et al.  First Principles Calculation of the Thermal Volume Expansion Coefficient of Tetragonal Zircon Dioxide , 2011 .

[240]  Stefan Funken,et al.  An advanced model framework for solid electrolyte intercalation batteries. , 2011, Physical chemistry chemical physics : PCCP.

[241]  Ki‐Hyun Kim,et al.  High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si , 2011 .

[242]  Tetsuro Kobayashi,et al.  High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2) , 2011 .

[243]  Dl Dmitry Danilov,et al.  Modeling All-Solid-State Li-Ion Batteries , 2011 .

[244]  N. Imanishi,et al.  Synthesis of garnet-type Li7 − xLa3Zr2O12 − 1/2x and its stability in aqueous solutions , 2011 .

[245]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[246]  C. Fisher,et al.  Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery , 2011 .

[247]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[248]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[249]  T. Fukutsuka,et al.  Lithium-ion Transfer at the Interface between Solid and Liquid Electrolytes under Applying DC Voltage , 2010 .

[250]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[251]  Jaka Sunarso,et al.  Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation , 2008 .

[252]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[253]  Yu U. Wang Computer modeling and simulation of solid-state sintering: A phase field approach , 2006 .

[254]  T. Abe,et al.  Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries , 2005 .

[255]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[256]  T. Abe,et al.  Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes , 2005 .

[257]  V. Thangadurai,et al.  Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes , 2005 .

[258]  John Newman,et al.  A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase , 2004 .

[259]  Bruno Scrosati,et al.  PEO-Based Electrolyte Membranes Based on LiBC4 O 8 Salt , 2004 .

[260]  Ralph E. White,et al.  Development of First Principles Capacity Fade Model for Li-Ion Cells , 2004 .

[261]  J. Janek,et al.  Chemical kinetics of phase boundaries in solids , 1998 .

[262]  Vincent S. Battaglia,et al.  Modeling of a Growing Oxide Film: The Iron/Iron Oxide System , 1995 .

[263]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[264]  D. Sinclair,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .

[265]  Tadeusz Bak,et al.  Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties , 1989 .

[266]  R. Huggins Solid State Ionics , 1989 .

[267]  Maoyi Yi,et al.  High densification and Li-ion conductivity of Al-free Li7-La3Zr2-Ta O12 garnet solid electrolyte prepared by using ultrafine powders , 2019, Ceramics International.

[268]  Yunhui Gong,et al.  High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture , 2019, Materials Today.

[269]  E. Wachsman,et al.  Towards Mixed Ionic and Electronic Conducting Li-Stuffed Garnets , 2018 .

[270]  P. Mukherjee,et al.  Mesoscale Analysis of the Electrolyte-Electrode Interface in All-Solid-State Li-Ion Batteries , 2018 .

[271]  B. Polzin,et al.  On Leakage Current Measured at High Cell Voltages in Lithium-Ion Batteries , 2017 .

[272]  K. Zhao,et al.  Mechanical and Structural Degradation of LiNixMnyCozO2 Cathode in Li-Ion Batteries: An Experimental Study , 2017 .

[273]  James A. Gilbert,et al.  Tris(trimethylsilyl) Phosphite (TMSPi) and Triethyl Phosphite (TEPi) as Electrolyte Additives for Lithium Ion Batteries: Mechanistic Insights into Differences during LiNi0.5Mn0.3Co0.2O2-Graphite Full Cell Cycling , 2017 .

[274]  A. Hayashi,et al.  Electronic and Ionic Conductivities of LiNi1/3Mn1/3Co1/3O2-Li3PS4 Positive Composite Electrodes for All-Solid-State Lithium Batteries , 2017 .

[275]  H. Munakata,et al.  Thermal Stability of Various Cathode Materials against Li 6.25 Al 0.25 La 3 Zr 2 O 12 Electrolyte , 2017 .

[276]  V. Thangadurai,et al.  X-ray Photoelectron Spectroscopy and AC Impedance Spectroscopy Studies of Li-La-Zr-O Solid Electrolyte Thin Film/LiCoO2 Cathode Interface for All-Solid-State Li Batteries , 2017 .

[277]  Z. Deng,et al.  Elastic Properties of Alkali Superionic Conductor Electrolytes from First Principles Calculations , 2016 .

[278]  V. Srinivasan,et al.  Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode , 2016 .

[279]  Y. Chiang,et al.  Characterization of Electronic and Ionic Transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content , 2016 .

[280]  K. Tadanaga,et al.  Preparation of lithium ion conductive Al-doped Li 7 La 3 Zr 2 O 12 thin films by a sol-gel process , 2015 .

[281]  P. Ross,et al.  Quantifying Polarization Losses in an Organic Liquid Electrolyte/Single Ion Conductor Interface , 2014 .

[282]  Long Cai,et al.  Capacity Fade Model for Spinel LiMn2O4 Electrode , 2013 .

[283]  Xianke Lin,et al.  A Comprehensive Capacity Fade Model and Analysis for Li-Ion Batteries , 2013 .

[284]  Sangjin Park,et al.  Re-Deposition of Manganese Species on Spinel LiMn2O4 Electrode after Mn Dissolution , 2012 .

[285]  K. M. Abraham,et al.  Characterization of some polyacrylonitrile-based electrolytes , 1997 .