Adaptive and Distributed Coordination Algorithms for Mobile Sensing Networks

Consider n sites evolving within a convex polygon according to one of the following interaction laws: (i) each site moves away from the closest other site or polygon boundary, (ii) each site moves toward the furthest vertex of its own Voronoi polygon, or (iii) each site moves toward a geometric center (centroid, circumcenter, incenter, etc) of its own Voronoi polygon. These interaction laws give rise to strikingly simple dynamical systems whose behavior remains largely unknown. Which are their critical points? What is their asymptotic behavior? Are they optimizing any aggregate function? In what way do these local interactions give rise to distributed systems? Are they of any engineering use in robotic coordination problems and in the design of mobile sensor networks? This paper addresses these questions.

[1]  George J. Pappas,et al.  Flocking in Fixed and Switching Networks , 2007, IEEE Transactions on Automatic Control.

[2]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[3]  Lynne E. Parker,et al.  Multi-Robot Systems: From Swarms to Intelligent Automata , 2002, Springer Netherlands.

[4]  R. Murray,et al.  Graph rigidity and distributed formation stabilization of multi-vehicle systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[5]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[6]  Eric Klavins,et al.  Communication Complexity of Multi-robot Systems , 2002, WAFR.

[7]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[8]  Magnus Egerstedt,et al.  Behavior Based Robotics Using Hybrid Automata , 2000, HSCC.

[9]  R. Brockett Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems , 1991 .

[10]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[11]  Vijay Kumar,et al.  Towards Abstraction and Control for Large Groups of Robots , 2003, Control Problems in Robotics.

[12]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[13]  A. Bacciotti,et al.  Stability and Stabilization of Discontinuous Systems and Nonsmooth Lyapunov Functions , 1999 .

[14]  Joseph S. B. Mitchell,et al.  Shortest Paths and Networks , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[15]  John N. Tsitsiklis,et al.  Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms , 1984, 1984 American Control Conference.

[16]  Lisa Abel Commemorative Issue , .

[17]  Steven H. Low,et al.  Optimization flow control—I: basic algorithm and convergence , 1999, TNET.

[18]  Maja J. Matari,et al.  Behavior-based Control: Examples from Navigation, Learning, and Group Behavior , 1997 .

[19]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[20]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[21]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[22]  Ichiro Suzuki,et al.  Distributed algorithms for formation of geometric patterns with many mobile robots , 1996, J. Field Robotics.

[23]  Roger W. Brockett,et al.  Hybrid Models for Motion Control Systems , 1993 .

[24]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[25]  Sven Skyum,et al.  A Simple Algorithm for Computing the Smallest Enclosing Circle , 1990, Inf. Process. Lett..

[26]  Francesco Bullo,et al.  Coordination and Geometric Optimization via Distributed Dynamical Systems , 2003, SIAM J. Control. Optim..

[27]  Howie Choset,et al.  Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.

[28]  Micha Sharir,et al.  Efficient algorithms for geometric optimization , 1998, CSUR.

[29]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[30]  Lynne E. Parker,et al.  Robot Teams: From Diversity to Polymorphism , 2002 .

[31]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[32]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[33]  James A. Hendler,et al.  Languages, behaviors, hybrid architectures, and motion control , 1998 .

[34]  Maja J. Mataric,et al.  Territorial multi-robot task division , 1998, IEEE Trans. Robotics Autom..

[35]  Vijay Kumar,et al.  Modeling and control of formations of nonholonomic mobile robots , 2001, IEEE Trans. Robotics Autom..

[36]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[37]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[38]  Z. Drezner,et al.  The p-center location problem in an area , 1996 .

[39]  A. Volgenant,et al.  Facility location: a survey of applications and methods , 1996 .

[40]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[41]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[42]  Said Salhi,et al.  Facility Location: A Survey of Applications and Methods , 1996 .

[43]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[44]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[45]  B. Paden,et al.  Lyapunov stability theory of nonsmooth systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[46]  Maja J. Mataric,et al.  Behaviour-based control: examples from navigation, learning, and group behaviour , 1997, J. Exp. Theor. Artif. Intell..

[47]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[48]  V. G. Bolti︠a︡nskiĭ,et al.  Geometric Methods and Optimization Problems , 1998 .