Sensitivity of Static Traffic User Equilibria with Perturbations in Arc Cost Function and Travel Demand

This paper deals with sensitivity analysis of static traffic user equilibrium problems. We apply some recently developed sensitivity analysis techniques for generalized equations to analyze the behavior of the equilibrium arc flow of such a problem when both the arc cost function and the travel demand vary. Our methods permit calculation of semiderivatives under general conditions and of derivatives under more restrictive conditions; we calculate the semiderivatives by solving a linear traffic user equilibrium problem and the derivatives by matrix multiplication together with the solution of a linear equation the dimension of which is at most the number of arcs. Three numerical examples show how to use these results in practice.

[1]  M. Patriksson,et al.  Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design , 2007 .

[2]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[3]  Stella Dafermos,et al.  Traffic Equilibrium and Variational Inequalities , 1980 .

[4]  M. A. Hall,et al.  Properties of the Equilibrium State in Transportation Networks , 1978 .

[5]  C. B. Mcguire,et al.  Studies in the Economics of Transportation , 1958 .

[6]  P. Marcotte,et al.  A sequential linear programming algorithm for solving monotone variational inequalities , 1989 .

[7]  Jiří V. Outrata,et al.  On a Special Class of Mathematical Programs with Equilibrium Constraints , 1997 .

[8]  S. M. Robinson Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity , 1987 .

[9]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[10]  Hillel Bar-Gera,et al.  Origin-Based Algorithm for the Traffic Assignment Problem , 2002, Transp. Sci..

[11]  T. Koopmans,et al.  Studies in the Economics of Transportation. , 1956 .

[12]  Anna Nagurney,et al.  Sensitivity analysis for the asymmetric network equilibrium problem , 1984, Math. Program..

[13]  Thomas L. Magnanti,et al.  Sensitivity Analysis for Variational Inequalities Defined on Polyhedral Sets , 1989, Math. Oper. Res..

[14]  Michael Patriksson,et al.  Sensitivity Analysis of Aggregated Variational Inequality Problems, with Application to Traffic Equilibria , 2003, Transp. Sci..

[15]  Terry L. Friesz,et al.  A reduction method for local sensitivity analyses of network equilibrium arc flows , 2000 .

[16]  Terry L. Friesz,et al.  Sensitivity Analysis for Equilibrium Network Flow , 1988, Transp. Sci..

[17]  F. Giannessi,et al.  Variational inequalities and network equilibrium problems , 1995 .

[18]  Michael Patriksson,et al.  Sensitivity Analysis of Traffic Equilibria , 2004, Transp. Sci..

[19]  Hai Yang,et al.  Sensitivity Analysis of Network Traffic Equilibrium Revisited: The Corrected Approach , 2007 .

[20]  N. D. Yen Lipschitz Continuity of Solutions of Variational Inequalities with a Parametric Polyhedral Constraint , 1995, Math. Oper. Res..

[21]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[22]  S. M. Robinson,et al.  Solution Continuity in Monotone Affine Variational Inequalities , 2007, SIAM J. Optim..

[23]  Stephen M. Robinson Strong Regularity and the Sensitivity Analysis of Traffic Equilibria: A Comment , 2006, Transp. Sci..

[24]  Stephen M. Robinson,et al.  Normal Maps Induced by Linear Transformations , 1992, Math. Oper. Res..

[25]  Thomas L. Magnanti,et al.  Sensitivity Analysis for Variational Inequalities , 1992, Math. Oper. Res..

[26]  Stephen M. Robinson,et al.  Variational Inequalities over Perturbed Polyhedral Convex Sets , 2008, Math. Oper. Res..

[27]  Mike Smith,et al.  The existence, uniqueness and stability of traffic equilibria , 1979 .

[28]  S. M. Robinson Sensitivity Analysis of Variational Inequalities by Normal-Map Techniques , 1995 .

[29]  J. Dunn On the convergence of projected gradient processes to singular critical points , 1987 .

[30]  A. Shapiro On concepts of directional differentiability , 1990 .

[31]  Stephen M. Robinson Constraint Nondegeneracy in Variational Analysis , 2003, Math. Oper. Res..