Automatische Erfassung präziser Trajektorien in Personenströmen hoher Dichte

Maik Boltes Simulationen können helfen, Verkehrsanlagen für Fußgänger komfortabel und sicher zu gestalten. Das Verständnis über die Fußgängerdynamik ist dabei wesentlich für die Entwicklung verlässlicher Modelle. Hierfür sind detaillierte und reproduzierbare Daten realer Bewegungen von Menschenmassen und Individuen nötig, um das Bewegungsverhalten zu analysieren, daraufhin Modellideen zu entwickeln, deren Umsetzung zu kalibrieren und am Ende das Ergebnis zu validieren.

[1]  Patrick Robertson,et al.  Integration of foot-mounted inertial sensors into a Bayesian location estimation framework , 2008, 2008 5th Workshop on Positioning, Navigation and Communication.

[2]  Joachim Hertzberg,et al.  Contour-Based Object Detection in Range Images , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[3]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[4]  A. Seyfried,et al.  The fundamental diagram of pedestrian movement revisited , 2005, physics/0506170.

[5]  Ian Reid,et al.  fastHOG – a real-time GPU implementation of HOG , 2011 .

[6]  H. Hirschmüller Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information , 2005, CVPR.

[7]  Armin Seyfried,et al.  Experimental Study of Pedestrian Flow in the Channel through Bottleneck , 2011 .

[8]  Manabu Hashimoto,et al.  Multiple-person tracker with a fixed slanting stereo camera , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[9]  Minjie Chen,et al.  Trajectory Extraction and Density Analysis of Intersecting Pedestrian Flows from Video Recordings , 2011, PIA.

[10]  Ben J. A. Kröse,et al.  Head Detection in Stereo Data for People Counting and Segmentation , 2011, VISAPP.

[11]  O. Masoud,et al.  CAMERA SURVEILLANCE OF CROWDED TRAFFIC SCENES , 2002 .

[12]  Stefan Holl,et al.  Modeling the Dynamic Route Choice of Pedestrians to Assess the Criticality of Building Evacuation , 2011, Adv. Complex Syst..

[13]  Florian Schmidt,et al.  Integrating pedestrian simulation, tracking and event detection for crowd analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[14]  Larry S. Davis,et al.  Stride and cadence as a biometric in automatic person identification and verification , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[15]  Alan F. Smeaton,et al.  A Framework for Evaluating Stereo-Based Pedestrian Detection Techniques , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[16]  Mohcine Chraibi,et al.  Runtime Optimization of Force Based Models within the Hermes Project , 2011 .

[17]  W. N. Charman,et al.  Depth resolution in stereoscopic systems. , 1994, Applied optics.

[18]  H. Grabner,et al.  Is Pedestrian Detection Really a Hard Task ? ∗ , 2007 .

[19]  Stefan Holl,et al.  HERMES - Evacuation Assistant for Arenas , 2010 .

[20]  Jun Zhang,et al.  Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing , 2009 .

[21]  Dennis Mitzel Close-Range Human Detection for Head-Mounted Cameras , 2012 .

[22]  Mohcine Chraibi,et al.  Force-based models of pedestrian dynamics , 2011, Networks Heterog. Media.

[23]  Jake K. Aggarwal,et al.  Head segmentation and head orientation in 3D space for pose estimation of multiple people , 2000, 4th IEEE Southwest Symposium on Image Analysis and Interpretation.

[24]  Hong Qiao,et al.  Associated evolution of a support vector machine-based classifier for pedestrian detection , 2009, Inf. Sci..

[25]  Jake K. Aggarwal,et al.  Human detection using depth information by Kinect , 2011, CVPR 2011 WORKSHOPS.

[26]  Duane C. Brown,et al.  Close-Range Camera Calibration , 1971 .

[27]  Peter H. Tu,et al.  Crowd Segmentation Through Emergent Labeling , 2004, ECCV Workshop SMVP.

[28]  Michael Harville,et al.  Fast, integrated person tracking and activity recognition with plan-view templates from a single stereo camera , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[29]  Andreas M. Kunz,et al.  Using Head Tracking Data for Robust Short Term Path Prediction of Human Locomotion , 2013, Trans. Comput. Sci..

[30]  YangQuan Chen,et al.  Utilizing Augmented Reality Technology for Crowd Pedestrian Analysis Involving Individuals With Disabilities , 2013 .

[31]  R. Oktem,et al.  An RFID based indoor tracking method for navigating visually impaired people , 2010 .

[32]  Hongyong Yuan,et al.  Empirical study of a unidirectional dense crowd during a real mass event , 2013 .

[33]  Don Ray Murray,et al.  Using Real-Time Stereo Vision for Mobile Robot Navigation , 2000, Auton. Robots.

[34]  Matteo Munaro,et al.  Fast and Robust Multi-people Tracking from RGB-D Data for a Mobile Robot , 2012, IAS.

[35]  Andreas Schadschneider,et al.  Automatic Extraction of Pedestrian Trajectories from Video Recordings , 2010 .

[36]  Andreas Schadschneider,et al.  Empirical results for pedestrian dynamics and their implications for modeling , 2011, Networks Heterog. Media.

[37]  Mohcine Chraibi,et al.  Quantitative Description of Pedestrian Dynamics with a Force-Based Model , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[38]  Roberto Cipolla,et al.  Unsupervised Bayesian Detection of Independent Motion in Crowds , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[39]  Gary R. Bradski,et al.  Real time face and object tracking as a component of a perceptual user interface , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[40]  Zheng Qin,et al.  The fundamental diagram of pedestrian model with slow reaction , 2012, 1206.2423.

[41]  Antonio Albiol,et al.  Real-time high density people counter using morphological tools , 2001, IEEE Trans. Intell. Transp. Syst..

[42]  Marcus A. Magnor,et al.  Markerless Motion Capture using multiple Color-Depth Sensors , 2011, VMV.

[43]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[44]  Andrew Zisserman,et al.  Learning To Count Objects in Images , 2010, NIPS.

[45]  Andrew Zisserman,et al.  Multiple kernels for object detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[46]  Larry S. Davis,et al.  Probabilistic framework for segmenting people under occlusion , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[47]  Olivier D. Faugeras,et al.  3D articulated models and multi-view tracking with silhouettes , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[48]  Mubarak Shah,et al.  A noniterative greedy algorithm for multiframe point correspondence , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Pascal Fua,et al.  Combining Stereo and Monocular Information to Compute Dense Depth Maps that Preserve Depth Discontinuities , 1991, IJCAI.

[50]  Armin Seyfried,et al.  Empirical Study of Pedestrians’ Characteristics at Bottlenecks , 2010 .

[51]  Christian Wöhler,et al.  Motion-based recognition of pedestrians , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[52]  A. Seyfried,et al.  Methods for measuring pedestrian density, flow, speed and direction with minimal scatter , 2009, 0911.2165.

[53]  Andreas Schadschneider,et al.  Using Stereo Recordings to Extract Pedestrian Trajectories Automatically in Space , 2011 .

[54]  Alessio Del Bue,et al.  Human behavior analysis in video surveillance: A Social Signal Processing perspective , 2013, Neurocomputing.

[55]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[56]  Armin Seyfried,et al.  Empirical data for pedestrian flow through bottlenecks , 2009 .

[57]  Chris Hide,et al.  Integrating Low Cost IMU with Building Heading In Indoor Pedestrian Navigation , 2011 .

[58]  Mark Fiala,et al.  ARTag, a fiducial marker system using digital techniques , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[59]  Sergio A. Velastin,et al.  Passenger Density Measurement in a Train Carriage Using Image Processing , 1997 .

[60]  Serge P. Hoogendoorn,et al.  Capacity of doors during evacuation conditions , 2010 .

[61]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  Ramakant Nevatia,et al.  Tracking multiple humans in complex situations , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Bauke de Vries,et al.  RFID Technology Applied for Validation of an Office Simulation Model , 2010 .

[65]  Haroon Idrees,et al.  Multi-source Multi-scale Counting in Extremely Dense Crowd Images , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[66]  Armin Seyfried,et al.  Analysis of bottleneck motion using Voronoi diagrams , 2010, 1003.5465.

[67]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.

[68]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[69]  Armin Seyfried,et al.  Modeling Stop-and-Go Waves in Pedestrian Dynamics , 2009, PPAM.

[70]  Armin Seyfried,et al.  Steps Toward the Fundamental Diagram — Empirical Results and Modelling , 2007 .

[71]  Tieniu Tan,et al.  Principal axis-based correspondence between multiple cameras for people tracking , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  M. Schreckenberg,et al.  Experimental study of pedestrian flow through a bottleneck , 2006, physics/0610077.

[73]  Wei Lv,et al.  Experimental Study on the Interaction Mechanism of Cross-Walking Pedestrians , 2015 .

[74]  Daichi Yanagisawa,et al.  Improvement of pedestrian flow by slow rhythm. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  Mubarak Shah,et al.  Visual crowd surveillance through a hydrodynamics lens , 2011, Commun. ACM.

[76]  Fernand S. Cohen,et al.  3D pedestrian tracking based on overhead cameras , 2013, 2013 Seventh International Conference on Distributed Smart Cameras (ICDSC).

[77]  Xiaoming Liu,et al.  An intelligent video framework for homeland protection , 2007, SPIE Defense + Commercial Sensing.

[78]  Francisco José Madrid-Cuevas,et al.  People detection and tracking with multiple stereo cameras using particle filters , 2009, J. Vis. Commun. Image Represent..

[79]  Andrzej Czyzewski,et al.  Video analytics-based algorithm for monitoring egress from buildings , 2014, Multimedia Tools and Applications.

[80]  D. Helbing,et al.  Lattice gas simulation of experimentally studied evacuation dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  Larry S. Davis,et al.  View-invariant Estimation of Height and Stride for Gait Recognition , 2002, Biometric Authentication.

[82]  Robert B. Fisher,et al.  Modelling Crowd Scenes for Event Detection , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[83]  Armin Seyfried,et al.  The repulsive force in continous space models of pedestrian movement , 2008 .

[84]  Fernand S. Cohen,et al.  Pedestrian Tracking based on 3D Head Point Detection , 2013, VISAPP.

[85]  Ching-Tang Hsieh,et al.  A Kinect-based people-flow counting system , 2012, 2012 International Symposium on Intelligent Signal Processing and Communications Systems.

[86]  Philip Kelly Pedestrian detection and tracking using stereo vision techniques , 2008 .

[87]  Jarosław Wąs,et al.  Dynamic Data–Driven Simulation of Pedestrian Movement with Automatic Validation , 2015 .

[88]  Armin Seyfried,et al.  Capacity Estimation for Emergency Exits and Bottlenecks , 2007 .

[89]  Dinesh Manocha,et al.  Modeling, Simulation and Visual Analysis of Crowds , 2013, The International Series in Video Computing.

[90]  Dariu Gavrila,et al.  Multi-cue Pedestrian Detection and Tracking from a Moving Vehicle , 2007, International Journal of Computer Vision.

[91]  Larry S. Davis,et al.  Human detection using partial least squares analysis , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[92]  Yan Guo,et al.  Real-time stereo tracking of multiple moving heads , 2001, Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems.

[93]  Tomáš Lipták,et al.  Motion Capture of Human for Interaction with Service Robot , 2013 .

[94]  J. Krumm,et al.  Multi-camera multi-person tracking for EasyLiving , 2000, Proceedings Third IEEE International Workshop on Visual Surveillance.

[95]  Roy-Erlend Berg,et al.  Real-time people counting system using video camera , 2008 .

[96]  Ligang Liu,et al.  Scanning 3D Full Human Bodies Using Kinects , 2012, IEEE Transactions on Visualization and Computer Graphics.

[97]  Andreas Schadschneider,et al.  Phase Coexistence in Congested States of Pedestrian Dynamics , 2010, ACRI.

[98]  Afshin Dehghan,et al.  Automatic Detection and Tracking of Pedestrians in Videos with Various Crowd Densities , 2014 .

[99]  R. S. Ramakrishna,et al.  Error Analysis in Stereo Vision , 1998, ACCV.

[100]  Jodie Y S Lee,et al.  A study of the bi-directional pedestrian flow characteristics at Hong Kong signalized crosswalk facilities , 2002 .

[101]  T. Nagatani,et al.  Experiment and simulation of pedestrian counter flow , 2004 .

[102]  Jun Zhang,et al.  Experimental study of pedestrian flow through a T-junction , 2012, 1207.5688.

[103]  Álvaro García-Martín,et al.  People detection based on appearance and motion models , 2011, 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[104]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[105]  Mubarak Shah,et al.  A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[106]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[107]  John Krumm,et al.  Accuracy characterization for metropolitan-scale Wi-Fi localization , 2005, MobiSys '05.

[108]  Mohcine Chraibi,et al.  Generalized centrifugal-force model for pedestrian dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  Adam Baumberg,et al.  Learning deformable models for tracking human motion , 1996 .

[110]  Marshall F. Tappen,et al.  Learning pedestrian dynamics from the real world , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[111]  Timo Korhonen,et al.  Evacuation experiments in offices and public buildings , 2007 .

[112]  Neeti A. Ogale,et al.  A survey of techniques for human detection from video , 2006 .

[113]  Mohcine Chraibi,et al.  Parallel real time computation of large scale pedestrian evacuations , 2013, Adv. Eng. Softw..

[114]  YangQuan Chen,et al.  A large-scale controlled experiment on pedestrian walking behavior involving individuals with disabilities , 2017 .

[115]  Daniel Cremers,et al.  Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions , 2013, Robotics: Science and Systems.

[116]  Mohan M. Trivedi,et al.  Human Body Model Acquisition and Motion Capture Using Voxel Data , 2002, AMDO.

[117]  Weiguo Song,et al.  Experimental study of pedestrian behaviors in a corridor based on digital image processing , 2012 .

[118]  Corina Kim Schindhelm,et al.  Evaluating SLAM Approaches for Microsoft Kinect , 2012, ICWMC 2012.

[119]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[120]  Sheng-Fuu Lin,et al.  Real-time pedestrian detection system with novel thermal features at night , 2014, 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings.

[121]  Anders Johansson,et al.  Data-Driven Modeling of Pedestrian Crowds , 2009 .

[122]  Andreas Schadschneider,et al.  Empirical Results for Pedestrian Dynamics and their Implications for Cellular Automata Models , 2009 .

[123]  Kardi Teknomo,et al.  Automation of Tracking Trajectories in a Crowded Situation , 2012 .

[124]  Mohamed H. Dridi Tracking Individual Targets in High Density Crowd Scenes Analysis of a Video Recording in Hajj 2009 , 2014, ArXiv.

[125]  Eric Foxlin,et al.  VIS-Tracker: a wearable vision-inertial self-tracker , 2003, IEEE Virtual Reality, 2003. Proceedings..

[126]  Trevor Darrell,et al.  Integrated Person Tracking Using Stereo, Color, and Pattern Detection , 2000, International Journal of Computer Vision.

[127]  Partha Chakroborty,et al.  Comparison of Pedestrian Fundamental Diagram across Cultures , 2009, Adv. Complex Syst..

[128]  Jan Giebel,et al.  Shape-based pedestrian detection and tracking , 2002, Intelligent Vehicle Symposium, 2002. IEEE.

[129]  Hans-Peter Seidel,et al.  A data-driven approach for real-time full body pose reconstruction from a depth camera , 2011, 2011 International Conference on Computer Vision.

[130]  Takeo Kanade,et al.  A System for Video Surveillance and Monitoring , 2000 .

[131]  Henry Fuchs,et al.  Encumbrance-free telepresence system with real-time 3D capture and display using commodity depth cameras , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[132]  Armin Seyfried,et al.  Comparative Analysis of Pedestrian, Bicycle and Car Traffic Moving in Circuits , 2013 .

[133]  Douglas B. Williams,et al.  Detection and identification of human targets in radar data , 2007, SPIE Defense + Commercial Sensing.

[134]  Shane Brennan,et al.  A Fast Stereo-based System for Detecting and Tracking Pedestrians from a Moving Vehicle , 2009, Int. J. Robotics Res..

[135]  Daichi Yanagisawa,et al.  Inflow Process: A Counterpart of Evacuation , 2015 .

[136]  M. Schreckenberg,et al.  Experimental study of pedestrian counterflow in a corridor , 2006, cond-mat/0609691.

[137]  Ramakant Nevatia,et al.  Segmentation and Tracking of Multiple Humans in Crowded Environments , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[138]  Klaus Richter,et al.  Image-Based Situation Assessment in Public Space , 2012, Future Security.

[139]  Richard Bowden,et al.  Detection and Tracking of Humans by Probabilistic Body Part Assembly , 2005, BMVC.

[140]  Soraia Raupp Musse,et al.  Crowd Analysis Using Computer Vision Techniques , 2010, IEEE Signal Processing Magazine.

[141]  Peter Reinartz,et al.  The potential of agent-based modelling for verification of people trajectories based on smartphone sensor data , 2014 .

[142]  César A. Hidalgo,et al.  Unique in the Crowd: The privacy bounds of human mobility , 2013, Scientific Reports.

[143]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[144]  E. L. Dagless,et al.  Vehicle and pedestrian detection and tracking , 1990 .

[145]  Berthold K. P. Horn,et al.  "Determining optical flow": A Retrospective , 1993, Artif. Intell..

[146]  Bastian Leibe,et al.  Level-set person segmentation and tracking with multi-region appearance models and top-down shape information , 2011, 2011 International Conference on Computer Vision.

[147]  Bernt Schiele,et al.  Robust Object Detection with Interleaved Categorization and Segmentation , 2008, International Journal of Computer Vision.

[148]  A. Schadschneider,et al.  Enhanced Empirical Data for the Fundamental Diagram and the Flow Through Bottlenecks , 2008, 0810.1945.

[149]  Dirk Helbing,et al.  Experiment, theory, and simulation of the evacuation of a room without visibility. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  G. Lebon The Crowd: A Study of the Popular Mind , 2003 .

[151]  Xiaogang Wang,et al.  Switchable Deep Network for Pedestrian Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[152]  T. Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik a Survey on Variational Optic Flow Methods for Small Displacements a Survey on Variational Optic Flow Methods for Small Displacements , 2022 .

[153]  Tieniu Tan,et al.  An Integrated Traffic and Pedestrian Model-Based Vision System , 1997, BMVC.

[154]  Rafael Muñoz-Salinas,et al.  People Detection and Tracking Through Stereo Vision for Human-Robot Interaction , 2005, MICAI.

[155]  Chabane Djeraba,et al.  Global Analysis of Motion Vectors for Event Detection in Crowd Scenes , 2009, Computer Vision and Pattern Recognition.

[156]  Shaogang Gong,et al.  Feature Mining for Localised Crowd Counting , 2012, BMVC.

[157]  David A. McAllester,et al.  Cascade object detection with deformable part models , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[158]  Yael Moses,et al.  Homography based multiple camera detection and tracking of people in a dense crowd , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[159]  Ting Yu,et al.  Unified Crowd Segmentation , 2008, ECCV.

[160]  Sven Haase,et al.  Multi-modal surface registration for markerless initial patient setup in radiation therapy using microsoft's Kinect sensor , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[161]  Juergen Gall,et al.  Class-specific Hough forests for object detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[162]  William H. K. Lam,et al.  Variation of walking speeds on a unidirectional walkway and on a bidirectional stairway , 2006 .

[163]  Edward H. Adelson,et al.  Analyzing and recognizing walking figures in XYT , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[164]  Andrew W. Ellis,et al.  Human Cognitive Neuropsychology: A Textbook With Readings , 2013 .

[165]  Luc Van Gool,et al.  Coupled Detection and Trajectory Estimation for Multi-Object Tracking , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[166]  Rafael Muñoz-Salinas,et al.  People detection and tracking using stereo vision and color , 2007, Image Vis. Comput..

[167]  Stefan Holl,et al.  Experimentation, data collection, modeling and simulation of pedestrian dynamics , 2014 .

[168]  Eric W. Marchant,et al.  A computer model for the evacuation of large building populations , 1995 .

[169]  Michal Havlena,et al.  Omnidirectional sensors and their calibration for the Dirac project ( Version 1 . 0 ) Hynek Bakstein Michal Havlena Petr Pohl , 2007 .

[170]  Carlo Tomasi,et al.  People Detection Using Color and Depth Images , 2011, MCPR.

[171]  Ryusuke Sagawa,et al.  Dense one-shot 3D reconstruction by detecting continuous regions with parallel line projection , 2011, 2011 International Conference on Computer Vision.

[172]  Larry S. Davis,et al.  Person identification using automatic height and stride estimation , 2002, Object recognition supported by user interaction for service robots.

[173]  Erik Hjelmås,et al.  Face Detection: A Survey , 2001, Comput. Vis. Image Underst..

[174]  Patrick Robertson,et al.  Development and Evaluation of a Combined WLAN and Inertial Indoor Pedestrian Positioning System , 2009 .

[175]  Jon M. Kerridge,et al.  Collecting Pedestrian Trajectory Data In Real-time , 2007 .

[176]  Alex Haro,et al.  Field test of a new method for tracking small fishes in shallow rivers using passive integrated transponder (PIT) technology , 2000 .

[177]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[178]  M. Bierlaire,et al.  Exploratory analysis of pedestrian flow characteristics in mobility hubs using trajectory data , 2013 .

[179]  Claire Marrison,et al.  Effects of Motivation and Cabin Configuration on Emergency Aircraft Evacuation Behavior and Rates of Egress , 1996 .

[180]  Massimo Bertozzi,et al.  Stereo Vision-based approaches for Pedestrian Detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[181]  Stefano Soatto,et al.  Quick Shift and Kernel Methods for Mode Seeking , 2008, ECCV.

[182]  Moustafa Youssef,et al.  The Horus WLAN location determination system , 2005, MobiSys '05.

[183]  Zheng Liu,et al.  Pedestrian detection from thermal images with a scattered difference of directional gradients feature descriptor , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[184]  Karsten Berns,et al.  Vision-Based Person Detection for Safe Navigation of Commercial Vehicle , 2014, IAS.

[185]  Stephen J. Maybank,et al.  Fusion of Multiple Tracking Algorithms for Robust People Tracking , 2002, ECCV.

[186]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[187]  R. C. Luo,et al.  Wireless and Pyroelectric Sensory Fusion System for Indoor Human/Robot Localization and Monitoring , 2013, IEEE/ASME Transactions on Mechatronics.

[188]  Andrea Cavallaro,et al.  Person re-identification in crowd , 2012, Pattern Recognit. Lett..

[189]  William H. K. Lam,et al.  Empirical Evidence for the Look-Ahead Behavior of Pedestrians in Bi-directional Flows , 2012 .

[190]  Cécile Appert-Rolland,et al.  Properties of pedestrians walking in line. II. Stepping behavior. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[191]  Zhijing Liu,et al.  Video Pedestrian Detection Based on Orthogonal Scene Motion Pattern , 2014 .

[192]  Roland Siegwart,et al.  A Flexible Technique for Accurate Omnidirectional Camera Calibration and Structure from Motion , 2006, Fourth IEEE International Conference on Computer Vision Systems (ICVS'06).

[193]  Nuno Vasconcelos,et al.  Analysis of Crowded Scenes using Holistic Properties , 2009 .

[194]  Zhanyi Hu,et al.  PnP Problem Revisited , 2005, Journal of Mathematical Imaging and Vision.

[195]  Larry S. Davis,et al.  Pedestrian tracking from a moving vehicle , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[196]  Jun Fang,et al.  Fundamental Diagram of Pedestrian Dynamics by Safety Interspace Model , 2012 .

[197]  Eric Foxlin,et al.  Pedestrian tracking with shoe-mounted inertial sensors , 2005, IEEE Computer Graphics and Applications.

[198]  Andreas Schadschneider,et al.  Empirical Results for Pedestrian Dynamics at Bottlenecks , 2009, PPAM.

[199]  Jun Zhang,et al.  Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions , 2011, 1102.4766.

[200]  Jesse S. Jin,et al.  Tracking Using CamShift Algorithm and Multiple Quantized Feature Spaces , 2004, VIP.

[201]  Larry S. Davis,et al.  Probabilistic template based pedestrian detection in infrared videos , 2002, Intelligent Vehicle Symposium, 2002. IEEE.

[202]  Dinesh Manocha,et al.  Modeling, Simulation and Visual Analysis of Crowds: A Multidisciplinary Perspective , 2013, Modeling, Simulation and Visual Analysis of Crowds.

[203]  Mohcine Chraibi,et al.  Validated force-based modeling of pedestrian dynamics , 2012 .

[204]  Alan F. Smeaton,et al.  Pedestrian detection in uncontrolled environments using stereo and biometric information , 2006, VSSN '06.

[205]  Ivan Laptev,et al.  Data-driven crowd analysis in videos , 2011, ICCV.

[206]  Adrian Hilton,et al.  Visual Analysis of Humans - Looking at People , 2013 .

[207]  Armin Seyfried,et al.  Improving Egress Design through Measurement and Correct Interpretation of the Fundamental Diagram for Stairs , 2010 .

[208]  Dietmar Bauer,et al.  Using laser scanner data to calibrate certain aspects of microscopic pedestrian motion models , 2010 .

[209]  Stephen J. McKenna,et al.  Tracking interacting people , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[210]  Roland Siegwart,et al.  Multimodal People Detection and Tracking in Crowded Scenes , 2008, AAAI.

[211]  Sergio A. Velastin,et al.  Crowd analysis: a survey , 2008, Machine Vision and Applications.

[212]  Serge P. Hoogendoorn,et al.  Controlled experiments to derive walking behaviour , 2002 .

[213]  Andreas Schadschneider,et al.  Fundamental Diagram and Validation of Crowd Models , 2008, ACRI.

[214]  Oliver Schreer Stereoanalyse und Bildsynthese , 2007 .

[215]  Anil M. Cheriyadat,et al.  Detecting multiple moving objects in crowded environments with coherent motion regions , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[216]  Nathan Eagle,et al.  Spatiotemporal Detection of Unusual Human Population Behavior Using Mobile Phone Data , 2014, PloS one.

[217]  Qiang Zhu,et al.  Human detection in images and videos , 2007 .

[218]  K. Nishinari,et al.  Introduction of frictional and turning function for pedestrian outflow with an obstacle. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[219]  Kwang Hee Won,et al.  Pedestrian detection using labeled depth data , 2013, The 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision.

[220]  Lawrence Wai-Choong Wong,et al.  A robust dead-reckoning pedestrian tracking system with low cost sensors , 2011, 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[221]  Luis F. Miranda-Moreno,et al.  Toward a Flexible System for Pedestrian Data Collection with a Microsoft Kinect Motion-Sensing Device , 2013 .

[222]  Nuno Vasconcelos,et al.  Privacy preserving crowd monitoring: Counting people without people models or tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[223]  Mark S. Nixon,et al.  A floor sensor system for gait recognition , 2005, Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05).

[224]  Konstantinos N. Plataniotis,et al.  Intelligent Dynamic Radio Tracking in Indoor Wireless Local Area Networks , 2010, IEEE Transactions on Mobile Computing.

[225]  Monika Desoi,et al.  Zulässige Erhebung von Daten zu Forschungszwecken , 2012, Datenschutz und Datensicherheit - DuD.

[226]  Antonio Fernández-Caballero,et al.  Efficient People Counting from Indoor Overhead Video Camera , 2013, PAAMS.

[227]  Henry Fuchs,et al.  Reducing interference between multiple structured light depth sensors using motion , 2012, 2012 IEEE Virtual Reality Workshops (VRW).

[228]  BlakeAndrew,et al.  Real-time human pose recognition in parts from single depth images , 2013 .

[229]  Ryosuke Shibasaki,et al.  Pedestrian Tracking Using Single-row Laser Range Scanners , 2002, MVA.

[230]  Dariu Gavrila,et al.  Real-time object detection for "smart" vehicles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[231]  Luc Van Gool,et al.  Exploring context to learn scene specific object detectors , 2009 .

[232]  Bastian Leibe,et al.  Real-time RGB-D based people detection and tracking for mobile robots and head-worn cameras , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[233]  Ákos Utasi,et al.  A Bayesian Approach on People Localization in Multicamera Systems , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[234]  Carlo Tomasi,et al.  Depth Discontinuities by Pixel-to-Pixel Stereo , 1999, International Journal of Computer Vision.

[235]  Armin Seyfried,et al.  Bottleneck Capacity Estimation for Pedestrian Traffic , 2007 .

[236]  Ivan Laptev,et al.  Density-aware person detection and tracking in crowds , 2011, ICCV.

[237]  Tobias Kretz,et al.  Crowd Research at School: Crossing Flows , 2014, ArXiv.

[238]  Jussi Kuutti,et al.  Performance of commercial over-head camera sensors in recognizing patterns of two and three persons: A case study , 2013, 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT).

[239]  Xiaogang Wang,et al.  Person Re-Identification by Saliency Learning , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[240]  T. Teixeira,et al.  A Survey of Human-Sensing : Methods for Detecting Presence , Count , Location , Track , and Identity , 2010 .

[241]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[242]  Armin Seyfried,et al.  Optimizing the Evacuation Time of Pedestrians in a Graph-based Navigation , 2010 .

[243]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[244]  R. Shibasaki,et al.  TRACKING PEDESTRIAN BY USING MULTIPLE LASER RANGE SCANNERS , 2004 .

[245]  Takeo Kanade,et al.  Tracking in unstructured crowded scenes , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[246]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[247]  Erwin Prassler,et al.  Tracking People in a Railway Station During Rush-Hour , 1999, ICVS.

[248]  Andrea Fossati,et al.  Consumer Depth Cameras for Computer Vision: Research Topics and Applications , 2012 .

[249]  Elena Mugellini,et al.  Context-Aware 3D Gesture Interaction Based on Multiple Kinects , 2011 .

[250]  P. Karpagavalli,et al.  Human Tracking and Counting In RangeImages by Using Mean Shift and Pylon GridAlgorithm , 2014 .

[251]  Fahed Awad,et al.  Human Detection by Robotic Urban Search and Rescue Using Image Processing and Neural Networks , 2014 .

[252]  Armin Seyfried,et al.  New Data for Human Performance in Planar Corridors , 2011 .

[253]  Kurt Konolige,et al.  Small Vision Systems: Hardware and Implementation , 1998 .

[254]  Victoria L Kendrick Introduction to crowd science , 2015, Ergonomics.

[255]  Rita Cucchiara,et al.  Multi-view people surveillance using 3D information , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[256]  Armin Seyfried,et al.  Improved Methods for Checking Forces Based Models of Pedestrian Dynamics , 2011 .

[257]  Nikolaus Correll,et al.  SwisTrack: A Tracking Tool for Multi-Unit Robotic and Biological Systems , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[258]  Imran N. Junejo,et al.  A System for 3D Video Acquisition and Spatio-Temporally Coherent 3D Animation Reconstruction using Multiple RGB-D Cameras , 2013 .

[259]  Liang Zhao,et al.  Stereo- and neural network-based pedestrian detection , 2000, IEEE Trans. Intell. Transp. Syst..

[260]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[261]  Ryosuke Shibasaki,et al.  Tracking multiple people using laser and vision , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[262]  Nuno Vasconcelos,et al.  Anomaly detection in crowded scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[263]  María Dolores Rodríguez-Moreno,et al.  MULTI-AGENT INTELLIGENT PLANNING ARCHITECTURE FOR PEOPLE LOCATION AND ORIENTATION USING RFID , 2011, Cybern. Syst..

[264]  Daniel Cremers,et al.  Dense visual SLAM for RGB-D cameras , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[265]  Ted Kremenek,et al.  A Probabilistic Room Location Service for Wireless Networked Environments , 2001, UbiComp.

[266]  R. Chapuis,et al.  Shape-based pedestrian detection and localization , 2003, Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems.

[267]  G. L. Bon,et al.  Scientific Literature: The Crowd. A Study of the Popular Mind , 1897 .

[268]  Jukka Vanhala,et al.  TileTrack: Capacitive human tracking using floor tiles , 2009, 2009 IEEE International Conference on Pervasive Computing and Communications.

[269]  Jean-Marc Odobez,et al.  Evaluating Multi-Object Tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[270]  Andrew W. Fitzgibbon,et al.  Direct Least Square Fitting of Ellipses , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[271]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[272]  Roland Siegwart,et al.  A Toolbox for Easily Calibrating Omnidirectional Cameras , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[273]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[274]  Mubarak Shah,et al.  Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[275]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[276]  Odile Picon,et al.  A Study of UWB FM-CW Radar for the Detection of Human Beings in Motion Inside a Building , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[277]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[278]  James Russell Detecting Humans in Video Footage using Multiple Classifiers , 2004 .

[279]  Shun Cao,et al.  A Pedestrian Dead Reckoning System Integrating Low-Cost MEMS Inertial Sensors and GPS Receiver , 2014 .

[280]  Armin Seyfried,et al.  The Fundamental Diagram of Pedestrian Movement Revisited — Empirical Results and Modelling , 2007 .

[281]  Antonio Albiol,et al.  VIDEO ANALYSIS USING CORNER MOTION STATISTICS , 2009 .

[282]  David C. Hogg,et al.  Who knows who - Inverting the Social Force Model for finding groups , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[283]  Kenji Terada,et al.  A counting method of the number of passing people using a stereo camera , 1999, IECON'99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029).

[284]  Marek Buk'avcek,et al.  Experimental Analysis of Two-Dimensional Pedestrian Flow in Front of the Bottleneck , 2014, 1408.6107.

[285]  Peter Vortisch,et al.  Pedestrian Flow at Bottlenecks - Validation and Calibration of Vissim's Social Force Model of Pedestrian Traffic and its Empirical Foundations , 2008, ArXiv.

[286]  李翔,et al.  Modeling and Simulation of Pedestrian Counter Flow on a Crosswalk , 2012 .

[287]  Stephan Hussmann,et al.  A Performance Review of 3D TOF Vision Systems in Comparison to Stereo Vision Systems , 2008 .

[288]  David Kim,et al.  Shake'n'sense: reducing interference for overlapping structured light depth cameras , 2012, CHI.

[289]  Serge P Hoogendorn,et al.  EXTRACTING MICROSCOPIC PEDESTRIAN CHARACTERISTICS FROM VIDEO DATA : RESULTS FROM EXPERIMENTAL RESEARCH INTO PEDESTRIAN WALKING BEHAVIOR , 2003 .

[290]  Wen Gao,et al.  Contour-motion feature (CMF): A space-time approach for robust pedestrian detection , 2009, Pattern Recognit. Lett..

[291]  Nicolas Saunier,et al.  Analysis of Pedestrian Travel with Static Bluetooth Sensors , 2012 .

[292]  Stefan Holl,et al.  Universal flow-density relation of single-file bicycle, pedestrian and car motion , 2013, 1312.2735.

[293]  Hao Wu,et al.  Experiment and modeling of exit-selecting behaviors during a building evacuation , 2010 .

[294]  C. Thorpe,et al.  Dressed human modeling, detection, and parts localization , 2001 .

[295]  Sergiu Nedevschi,et al.  Stereo-Based Pedestrian Detection for Collision-Avoidance Applications , 2009, IEEE Transactions on Intelligent Transportation Systems.

[296]  Alexander John,et al.  Trafficlike collective movement of ants on trails: absence of a jammed phase. , 2009, Physical review letters.

[297]  LiWanqing,et al.  Human detection from images and videos , 2016 .

[298]  Stefan Roth,et al.  People-tracking-by-detection and people-detection-by-tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[299]  L.P. Ligthart,et al.  UWB Radar for Human Being Detection , 2005, IEEE Aerospace and Electronic Systems Magazine.

[300]  Christoph Gustav Keller Stereo-based pedestrian detection and path prediction , 2014 .

[301]  Peter H. Tu,et al.  Simultaneous estimation of segmentation and shape , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[302]  Ruigang Yang,et al.  Gain Adaptive Real-Time Stereo Streaming , 2007 .

[303]  Chung-Lin Huang,et al.  Multiview-Based Cooperative Tracking of Multiple Human Objects , 2008, EURASIP J. Image Video Process..

[304]  Ryosuke Shibasaki,et al.  Laser-based detection and tracking of multiple people in crowds , 2007, Comput. Vis. Image Underst..

[306]  Fernando Seco Granja,et al.  Accurate Pedestrian Indoor Navigation by Tightly Coupling Foot-Mounted IMU and RFID Measurements , 2012, IEEE Transactions on Instrumentation and Measurement.

[307]  Gang Hua,et al.  Introduction to the Special Section on Real-World Face Recognition , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[308]  Sei-Wang Chen,et al.  Pedestrian detection and tracking at crossroads , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[309]  Mayank Bansal,et al.  A real-time pedestrian detection system based on structure and appearance classification , 2010, 2010 IEEE International Conference on Robotics and Automation.

[310]  Alan F. Smeaton,et al.  Robust pedestrian detection and tracking in crowded scenes , 2009, Image Vis. Comput..

[311]  Andrei Szabo,et al.  WLAN-Based Pedestrian Tracking Using Particle Filters and Low-Cost MEMS Sensors , 2007, 2007 4th Workshop on Positioning, Navigation and Communication.

[312]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2005, International Journal of Computer Vision.

[313]  Larry S. Davis,et al.  Multi-camera Tracking and Segmentation of Occluded People on Ground Plane Using Search-Guided Particle Filtering , 2006, ECCV.

[314]  A. Seyfried,et al.  Basics of Modelling the Pedestrian Flow , 2005, physics/0506189.

[315]  Antonio Barrientos,et al.  Human Detection from a Mobile Robot Using Fusion of Laser and Vision Information , 2013, Sensors.

[316]  D. Gavrila,et al.  3-D model-based tracking of human upper body movement: a multi-view approach , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[317]  Fei-Yue Wang,et al.  Pedestrian Detection Based on Clustered Poselet Models and Hierarchical and–or Grammar , 2015, IEEE Transactions on Vehicular Technology.

[318]  Ruigang Yang,et al.  Accurate 3D pose estimation from a single depth image , 2011, 2011 International Conference on Computer Vision.

[319]  Bernhard Steffen,et al.  Runtime Optimisation Approaches for a Real-Time Evacuation Assistant , 2011, PPAM.

[320]  Dariu Gavrila,et al.  Monocular Pedestrian Detection: Survey and Experiments , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[321]  YangQuan Chen,et al.  Analysis of Walking Speeds Involving Individuals with Disabilities in Different Walking Environments , 2014 .

[322]  Armin Seyfried,et al.  RELIABILITY ISSUES IN THE MICROSCOPIC MODELING OF PEDESTRIAN MOVEMENT , 2011 .

[323]  Kai Oliver Arras,et al.  People tracking in RGB-D data with on-line boosted target models , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[324]  Stefan Holl,et al.  Hermes - Erforschung eines Evakuierungsassistenten für den Krisenfall bei Großveranstaltungen , 2010, GI Jahrestagung.

[325]  Daniel Cremers,et al.  CopyMe3D: Scanning and Printing Persons in 3D , 2013, GCPR.

[326]  Tianqi Yang,et al.  Cross-view gait recognition based on human walking trajectory , 2014, J. Vis. Commun. Image Represent..

[327]  马剑,et al.  Multi-grid simulation of pedestrian counter flow with topological interaction , 2010 .

[328]  Luca Bruno,et al.  High statistics measurements of pedestrian dynamics , 2014, 1407.1254.

[329]  Bernt Schiele,et al.  Sliding-Windows for Rapid Object Class Localization: A Parallel Technique , 2008, DAGM-Symposium.

[330]  Mohcine Chraibi,et al.  Quantitative Verification of a Force-based Model for Pedestrian Dynamics , 2009, 0912.4044.

[331]  Stefan Nowak,et al.  Towards a Calibration of the Floor Field Cellular Automaton , 2011 .

[332]  Guoliang Li,et al.  Nighttime Pedestrian Detection Using Local Oriented Shape Context Descriptor , 2013 .

[333]  Andreas Geiger,et al.  Efficient Large-Scale Stereo Matching , 2010, ACCV.

[334]  Bernt Schiele,et al.  Visual People Detection - Different Models, Comparison and Discussion , 2009, ICRA 2009.

[335]  S. Chatterjee,et al.  Quantization error analysis in stereo vision , 1992, [1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers.

[336]  Serge P. Hoogendoorn,et al.  Pedestrian Behavior at Bottlenecks , 2005, Transp. Sci..

[337]  David A. McAllester,et al.  A discriminatively trained, multiscale, deformable part model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[338]  Daijin Kim,et al.  Real-time multiple people tracking using competitive condensation , 2002, Proceedings. International Conference on Image Processing.

[339]  Tamás Szirányi,et al.  Localizing people in multi-view environment using height map reconstruction in real-time , 2013, Pattern Recognit. Lett..

[340]  Hubert Klüpfel,et al.  OpenPedSim: A Framework for Pedestrian Flow Analysis , 2014 .

[341]  Bernt Schiele,et al.  Pedestrian detection in crowded scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[342]  Mark T. Keane,et al.  Cognitive Psychology: A Student's Handbook , 1990 .

[343]  Hassan A. Karimi,et al.  A pedestrian network construction algorithm based on multiple GPS traces , 2013 .

[344]  Michael J. Black,et al.  A framework for the robust estimation of optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[345]  Mikko Nuutinen,et al.  Method for measuring stereo camera depth accuracy based on stereoscopic vision , 2011, Electronic Imaging.

[346]  Osama Masoud,et al.  Robust pedestrian tracking using a model-based approach , 1997, Proceedings of Conference on Intelligent Transportation Systems.

[347]  Mohcine Chraibi,et al.  Pedestrian Dynamics with Event-Driven Simulation , 2008, 0806.4288.

[348]  Rainer Stiefelhagen,et al.  Multiple Object Tracking Performance Metrics and Evaluation in a Smart Room Environment , 2006 .

[349]  Larry S. Davis,et al.  W4S : A real-time system for detecting and tracking people in 2 D , 1998, eccv 1998.

[350]  Matej Kristan,et al.  Tracking by Identification Using Computer Vision and Radio , 2012, Sensors.

[351]  Jianping Zhang,et al.  Universalities in Fundamental Diagrams of Cars, Bicycles, and Pedestrians , 2015 .

[352]  Antonio Fernández-Caballero,et al.  Indoor Overhead Video Camera for Efficient People Counting , 2013 .

[353]  R. Faragher,et al.  An Analysis of the Accuracy of Bluetooth Low Energy for Indoor Positioning Applications , 2014 .

[354]  Shishir K. Shah,et al.  A survey of approaches and trends in person re-identification , 2014, Image Vis. Comput..

[355]  David Beymer,et al.  Person counting using stereo , 2000, Proceedings Workshop on Human Motion.

[356]  Salil Banerjee,et al.  Improving Accuracy in Ultra-Wideband Indoor Position Tracking through Noise Modeling and Augmentation , 2012 .

[357]  Csaba Benedek,et al.  3D people surveillance on range data sequences of a rotating Lidar , 2014, Pattern Recognit. Lett..

[358]  Jiang-tao Wang,et al.  On pedestrian detection and tracking in infrared videos , 2012, Pattern Recognit. Lett..

[359]  Wei Lv,et al.  A continuous distance model (CDM) for the single-file pedestrian movement considering step frequency and length , 2012 .

[360]  Daichi Yanagisawa,et al.  Escape Velocity of the Leader in a Queue of Pedestrians , 2015 .

[361]  Mubarak Shah,et al.  Floor Fields for Tracking in High Density Crowd Scenes , 2008, ECCV.

[362]  Michael Harville,et al.  Stereo person tracking with adaptive plan-view templates of height and occupancy statistics , 2004, Image Vis. Comput..

[363]  Ramakant Nevatia,et al.  Bayesian human segmentation in crowded situations , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[364]  Thomas Mauthner,et al.  Multi-camera multi-object tracking by robust hough-based homography projections , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[365]  Tieniu Tan,et al.  Robust object tracking via online learning of adaptive appearance manifold , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[366]  Weibin Liu,et al.  Crowd behaviors analysis and abnormal detection based on surveillance data , 2014, J. Vis. Lang. Comput..

[367]  Dirk Helbing,et al.  Experimental study of the behavioural mechanisms underlying self-organization in human crowds , 2009, Proceedings of the Royal Society B: Biological Sciences.

[368]  Guy Theraulaz,et al.  Reconstructing Motion Capture Data for Human Crowd Study , 2011, MIG.

[369]  Gordon F. Mulligan,et al.  Population growth in the world’s largest cities , 2005 .

[370]  F. Seco,et al.  A comparison of Pedestrian Dead-Reckoning algorithms using a low-cost MEMS IMU , 2009, 2009 IEEE International Symposium on Intelligent Signal Processing.

[371]  Pingkun Yan,et al.  Special issue: Behaviours in video , 2013, Neurocomputing.

[372]  Michel Bierlaire,et al.  Behavioral Priors for Detection and Tracking of Pedestrians in Video Sequences , 2006, International Journal of Computer Vision.

[373]  Armin Seyfried,et al.  Traffic and Granular Flow Conference celebrates 10th Edition by returning to Jülich , 2013 .

[374]  Robert B. Fisher,et al.  Hidden Markov Models for Optical Flow Analysis in Crowds , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[375]  Armin Seyfried,et al.  Collecting pedestrian trajectories , 2013, Neurocomputing.

[376]  Osama Masoud,et al.  A novel method for tracking and counting pedestrians in real-time using a single camera , 2001, IEEE Trans. Veh. Technol..

[377]  Universityof SouthernCalifornia LosAngeles Laser-based People Tracking , 2002 .

[378]  Norbert Brändle,et al.  Pedestrian Detection and Tracking for Counting Applications in Crowded Situations , 2006, 2006 IEEE International Conference on Video and Signal Based Surveillance.

[379]  Patrick Robertson,et al.  FootSLAM: Pedestrian Simultaneous Localization and Mapping Without Exteroceptive Sensors—Hitchhiking on Human Perception and Cognition , 2012, Proceedings of the IEEE.

[380]  Andreas Savvides,et al.  An Empirical Characterization of Radio Signal Strength Variability in 3-D IEEE 802.15.4 Networks Using Monopole Antennas , 2006, EWSN.

[381]  Bernt Schiele,et al.  In Good Shape: Robust People Detection based on Appearance and Shape , 2011, BMVC.

[382]  Bart Selman,et al.  Human Activity Detection from RGBD Images , 2011, Plan, Activity, and Intent Recognition.

[383]  Dirk Helbing,et al.  From Crowd Dynamics to Crowd Safety: a Video-Based Analysis , 2008, Adv. Complex Syst..

[384]  최우영,et al.  Stereo vision 및 응용 , 1994 .

[385]  Jun Zhang,et al.  High precision analysis of unidirectional pedestrian flow within the Hermes Project , 2012 .

[386]  Vladimir Zverev,et al.  “FlowTech” and “EvaTech”: Two Computer-Simulation Methods for Evacuation Calculation , 2010 .

[387]  Michael Harville,et al.  Stereo Person Tracking with Adaptive Plan-View Statistical Templates , 2002 .

[388]  Wenyi Zhao,et al.  Effects of camera alignment errors on stereoscopic depth estimates , 1996, Pattern Recognit..

[389]  Hubert Klüpfel,et al.  Fundamentals of Pedestrian and Evacuation Dynamics , 2009, Multi-Agent Systems for Traffic and Transportation Engineering.

[390]  Norbert Krüger,et al.  Face Recognition and Gender determination , 1995 .

[391]  Robert T. Collins,et al.  Crowd Detection with a Multiview Sampler , 2010, ECCV.

[392]  V. Pisarevsky,et al.  Intel's Computer Vision Library: applications in calibration, stereo segmentation, tracking, gesture, face and object recognition , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[393]  Mohcine Chraibi,et al.  On Force-Based Modeling of Pedestrian Dynamics , 2013, Modeling, Simulation and Visual Analysis of Crowds.

[394]  Shiqi Yu,et al.  An attempt to pedestrian detection in depth images , 2011, 2011 Third Chinese Conference on Intelligent Visual Surveillance.

[395]  Federico Toschi,et al.  Parameter Estimation of Social Forces in Crowd Dynamics Models via a Probabilistic Method , 2014, Mathematical biosciences and engineering : MBE.

[396]  David Binnie,et al.  Measuring pedestrian trajectories with low cost infrared detectors: Preliminary results. , 2003 .

[397]  Bernt Schiele,et al.  Disparity Statistics for Pedestrian Detection: Combining Appearance, Motion and Stereo , 2010, ECCV.

[398]  Ryosuke Shibasaki,et al.  Multi-modal tracking of people using laser scanners and video camera , 2008, Image Vis. Comput..

[399]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[400]  Andreas Schadschneider,et al.  An Experimental Study of Pedestrian Congestions: Influence of Bottleneck Width and Length , 2009, 0911.4350.

[401]  Mubarak Shah,et al.  Identifying Behaviors in Crowd Scenes Using Stability Analysis for Dynamical Systems , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[402]  Sridha Sridharan,et al.  An evaluation of crowd counting methods, features and regression models , 2015, Comput. Vis. Image Underst..

[403]  Eyal de Lara,et al.  Are GSM Phones THE Solution for Localization? , 2006, Seventh IEEE Workshop on Mobile Computing Systems & Applications (WMCSA'06 Supplement).

[404]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[405]  Takashi Nagatani,et al.  Evacuation of crawlers and walkers from corridor through an exit , 2006 .

[406]  Silvio Savarese,et al.  Detecting and tracking people using an RGB-D camera via multiple detector fusion , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[407]  Sergio A. Velastin,et al.  A motion-based image processing system for detecting potentially dangerous situations in underground railway stations , 2006 .

[408]  David Suter,et al.  A re-evaluation of mixture of Gaussian background modeling [video signal processing applications] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[409]  Andreas Schadschneider,et al.  VALIDATION OF CA MODELS OF PEDESTRIAN DYNAMICS WITH FUNDAMENTAL DIAGRAMS , 2009, Cybern. Syst..

[410]  Liang Zhao,et al.  Recursive Context Reasoning for Human Detection and Parts Identification , 2000 .

[411]  Jun Zhang,et al.  Empirical study of turning and merging of pedestrian streams in T-junction , 2011, 1112.5299.

[412]  L. Kratz,et al.  Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[413]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[414]  Hiroshi Ishiguro,et al.  Human tracking using floor sensors based on the Markov chain Monte Carlo method , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[415]  Jun Zhang,et al.  Analysis of Crowd Dynamics with Laboratory Experiments , 2013, Modeling, Simulation and Visual Analysis of Crowds.

[416]  Roland Siegwart,et al.  Automatic detection of checkerboards on blurred and distorted images , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[417]  Dieter Willersinn,et al.  Semi-automatic people counting in aerial images of large crowds , 2012, Optics/Photonics in Security and Defence.

[418]  Cordelia Schmid,et al.  Human Detection Based on a Probabilistic Assembly of Robust Part Detectors , 2004, ECCV.

[419]  Gary Bradski,et al.  Computer Vision Face Tracking For Use in a Perceptual User Interface , 1998 .

[420]  Shing Chung Josh Wong,et al.  Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results , 2012 .

[421]  Moustafa Youssef,et al.  The Horus location determination system , 2008 .

[422]  Armin Seyfried,et al.  Experimental Study on Pedestrian Flow through Wide Bottleneck , 2014 .

[423]  Timo Korhonen,et al.  Fire Dynamics Simulator with Evacuation: FDS+Evac: Technical Reference and User's Guide , 2009 .

[424]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[425]  Armin Seyfried,et al.  Analyzing Stop-and-Go Waves by Experiment and Modeling , 2011 .

[426]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[427]  Armin Seyfried,et al.  Empirical Characteristics of Different Types of Pedestrian Streams , 2013 .

[428]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[429]  Xiaowei Zhang,et al.  A new method for pedestrian counting , 1995 .

[430]  Armin Seyfried,et al.  Tracking People in Crowded Scenes , 2014 .

[431]  Winnie Daamen,et al.  Assessing the Gap between Public Transport Vehicles and Platforms as a Barrier for the Disabled , 2008 .

[432]  Ryuzo Okada,et al.  Discriminative generalized hough transform for object dectection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[433]  Guohua Gu,et al.  Human recognition based on head-shoulder contour extraction and BP neural network , 2014, Other Conferences.

[434]  Matthias Nussbaum,et al.  Pedestrian And Evacuation Dynamics , 2016 .

[435]  Peter Pirsch,et al.  Real-time semi-global matching disparity estimation on the GPU , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[436]  How-Lung Eng,et al.  A Literature Review on Video Analytics of Crowded Scenes , 2013, Intelligent Multimedia Surveillance.

[437]  Mohamed Osama Khozium,et al.  Real-time Crowd Monitoring using Infrared Thermal Video Sequences , 2012 .

[438]  Kardi Teknomo,et al.  Automation of Pedestrian Tracking in a Crowded Situation , 2016, ArXiv.

[439]  Mubarak Shah,et al.  Abnormal crowd behavior detection using social force model , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[440]  Rongrong Ji,et al.  Sparse auto-encoder based feature learning for human body detection in depth image , 2015, Signal Process..

[441]  Mohcine Chraibi,et al.  Modeling the Desired Direction in a Force-Based Model for Pedestrian Dynamics , 2012, 1207.1189.

[442]  Flávio Luis Cardeal Pádua,et al.  Pylon grid: A fast method for human head detection in range images , 2013, Neurocomputing.

[443]  Yinhai Wang,et al.  Kinect‐Based Pedestrian Detection for Crowded Scenes , 2016, Comput. Aided Civ. Infrastructure Eng..

[444]  Junwei Han,et al.  A novel saliency detection framework for infrared thermal images , 2014, 2014 International Conference on Orange Technologies.

[445]  Luc Van Gool,et al.  Improved person detection in industrial environments using multiple self-calibrated cameras , 2011, 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[446]  Armin Seyfried,et al.  Hermes - an Evacuation Assistant for Mass Events , 2009 .

[447]  Kurt Konolige,et al.  Frame-Frame Matching for Realtime Consistent Visual Mapping , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[448]  Armin Seyfried,et al.  Microscopic insights into pedestrian motion through a bottleneck, resolving spatial and temporal variations , 2011, Collective Dynamics.

[449]  Kai Oliver Arras,et al.  People detection in RGB-D data , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[450]  S. Godha,et al.  Foot mounted inertial system for pedestrian navigation , 2008 .

[451]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[452]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[453]  Alexander G. Hauptmann,et al.  MoSIFT: Recognizing Human Actions in Surveillance Videos , 2009 .

[454]  J.-Y. Bouguet,et al.  Pyramidal implementation of the lucas kanade feature tracker , 1999 .

[455]  Hiroaki SAITO,et al.  Development of Pedestrian Detection System Using Far-Infrared Ray Camera , 2008 .

[456]  Grantham Pang,et al.  Multi-cue-Based Crowd Segmentation in Stereo Vision , 2011, CAIP.

[457]  Zhengyou Zhang,et al.  Flexible camera calibration by viewing a plane from unknown orientations , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[458]  Nicolas Vandenbroucke,et al.  Color Spaces and Image Segmentation , 2008 .

[459]  P. Roth,et al.  SURVEY OF APPEARANCE-BASED METHODS FOR OBJECT RECOGNITION , 2008 .

[460]  Michael J. Bla A Framework for the Robust Estimation of Optical Flow , 1993 .

[461]  Pascal Fua,et al.  Robust People Tracking with Global Trajectory Optimization , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[462]  Nicolas Courty,et al.  AGORASET: a dataset for crowd video analysis , 2012 .

[463]  Masaki Onishi,et al.  Dynamic Trajectory Extraction from Stereo Vision Using Fuzzy Clustering , 2008 .

[464]  H. C. Dickinson,et al.  THE PHOTOGRAPHIC METHOD OF STUDYING TRAFFIC BEHAVIOR , 1934 .

[465]  Sridha Sridharan,et al.  3D ellipsoid fitting for multi-view gait recognition , 2011, 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[466]  Frank Biocca,et al.  A Survey of Position Trackers , 1992, Presence: Teleoperators & Virtual Environments.

[467]  A. Schadschneider,et al.  Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram , 2011, 1107.5246.

[468]  Bastian Leibe,et al.  Efficient Use of Geometric Constraints for Sliding-Window Object Detection in Video , 2011, ICVS.

[469]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[470]  James W. Davis,et al.  Real-time closed-world tracking , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[471]  Shing Chung Josh Wong,et al.  Bidirectional Pedestrian Stream Model with Oblique Intersecting Angle , 2010 .

[472]  Sergio A. Velastin,et al.  Motion-based machine vision techniques for the management of large crowds , 1999, ICECS'99. Proceedings of ICECS '99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357).

[473]  Carlo Ratti,et al.  Kinects and Human Kinetics: A New Approach for Studying Crowd Behavior , 2012, ArXiv.

[474]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[475]  Harry Timmermans Pedestrian Behavior:Models, Data Collection and Applications , 2009 .