Hankel model reduction without balancing-A descriptor approach
暂无分享,去创建一个
[1] Maamar Bettayeb,et al. Optimal approximation of continuous-time systems , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[2] M. Kreĭn,et al. ANALYTIC PROPERTIES OF SCHMIDT PAIRS FOR A HANKEL OPERATOR AND THE GENERALIZED SCHUR-TAKAGI PROBLEM , 1971 .
[3] L. Silverman,et al. Model reduction via balanced state space representations , 1982 .
[4] M. Safonov,et al. Synthesis of positive real multivariable feedback systems , 1987 .
[5] A. Ran,et al. Optimal Hankel norm model reductions and Wiener-Hopf factorization II: The non-canonical case , 1987 .
[6] Michael G. Safonov,et al. CACSD using the state-space L/sup infinity / theory-a design example , 1988 .
[7] Michael G. Safonov,et al. Multivariable L∞ sensitivity optimization and hankel approximation , 1983, 1983 American Control Conference.
[8] Michael G. Safonov. Propagation of conic model uncertainty in hierarchical systems , 1983 .
[9] S. Kung,et al. Optimal Hankel-norm model reductions: Multivariable systems , 1980 .
[10] K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .
[11] J. Ball,et al. Optimal Hankel Norm model reductions and Weiner-Hopf factorization I: the canonical case , 1987 .
[12] B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .