Computational Vision for Interaction with People and Robots

Facilities for sensing and modification of the environmentis crucial to delivery of robotics facilities that can interact with humansand objects in the environment. Both for recognition of objectsand interpretation of human activities (for instruction and avoidance)the by far most versatile sensory modality is computational vision.Use of vision for interpretation of human gestures and for manipulationof objects is outlined in this paper. It is here described how combinationof multiple visual cues can be used to achieve robustness andthe tradeoff between models and cue integration is illustrated. Thedescribed vision competences are demonstrated in the context of anintelligent service robot that operates in a regular domestic setting.

[1]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Roberto Cipolla,et al.  Computer vision in interactive robotics , 1996 .

[3]  Y. Bar-Shalom Tracking and data association , 1988 .

[4]  Sebastian Thrun,et al.  Probabilistic Algorithms in Robotics , 2000, AI Mag..

[5]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[6]  Larry S. Davis,et al.  Exact and Approximate Solutions of the Perspective-Three-Point Problem , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Konstantinos A. Tarabanis,et al.  A survey of sensor planning in computer vision , 1995, IEEE Trans. Robotics Autom..

[8]  E. Malis,et al.  Positioning a Coarse-Calibrated Camera with Respect to an Unknown Planar Object by 2D 1/2 Visual Servoing , 1997 .

[9]  Vijay Kumar,et al.  Robotic grasping and contact: a review , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Larry S. Davis,et al.  Model-based object pose in 25 lines of code , 1992, International Journal of Computer Vision.

[11]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[12]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[13]  J. Cassell Computer Vision for Human–Machine Interaction: A Framework for Gesture Generation and Interpretation , 1998 .

[14]  Gregory D. Hager,et al.  Robot feedback control based on stereo vision: towards calibration-free hand-eye coordination , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[15]  Roberto Cipolla,et al.  Uncalibrated Stereo Vision with Pointing for a Man-Machine Interface , 1994, MVA.

[16]  Radu Horaud,et al.  An analytic solution for the perspective 4-point problem , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Helder Araujo,et al.  A Fully Projective Formulation for Lowe's Tracking Algorithm , 1996 .

[18]  William J. Wilson,et al.  Relative end-effector control using Cartesian position based visual servoing , 1996, IEEE Trans. Robotics Autom..

[19]  Steve Young,et al.  The HTK book , 1995 .

[20]  Henrik I. Christensen,et al.  Toward task oriented localization , 2000 .

[21]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[22]  Hans-Hellmut Nagel,et al.  Model-based object tracking in monocular image sequences of road traffic scenes , 1993, International Journal of Computer 11263on.

[23]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[24]  Gerd Hirzinger,et al.  Real-time visual tracking of 3D objects with dynamic handling of occlusion , 1997, Proceedings of International Conference on Robotics and Automation.

[25]  Alex Pentland,et al.  Real-Time American Sign Language Recognition Using Desk and Wearable Computer Based Video , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Peter K. Allen,et al.  Examples of 3D grasp quality computations , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[27]  Patrick Bouthemy,et al.  A 2D-3D model-based approach to real-time visual tracking , 2001, Image Vis. Comput..

[28]  Danny Roobaert Improving the Generalization of Linear Support Vector Machines: an Application to 3D Object Recognition with Cluttered Background , 1999, IJCAI 1999.

[29]  Danica Kragic Visual Servoing for Manipulation : Robustness and Integration Issues , 2001 .

[30]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[31]  Lars Petersson,et al.  Towards an Intelligent Service Robot System , 2000 .

[32]  Mongi A. Abidi,et al.  A New Efficient and Direct Solution for Pose Estimation Using Quadrangular Targets: Algorithm and Evaluation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Joseph S.-C. Yuan A general photogrammetric method for determining object position and orientation , 1989, IEEE Trans. Robotics Autom..

[34]  Karun B. Shimoga,et al.  Robot Grasp Synthesis Algorithms: A Survey , 1996, Int. J. Robotics Res..

[35]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[36]  Larry S. Davis,et al.  New exact and approximate solutions of the three-point perspective problem , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[37]  P. Wallace Agequake: Riding the Demographic Rollercoaster Shaking Business, Finance, and Our World , 1999 .

[38]  M. Carter Computer graphics: Principles and practice , 1997 .