Parts entropy and the principal kinematic formula
暂无分享,去创建一个
[1] S. Glasauer. A Generalization of Intersection Formulae of Integral Geometry , 1997 .
[2] Euler Integration and Euler Multiplication , 2005 .
[3] E. Teufel. Integral geometry and projection formulas in spaces of constant curvature , 1986 .
[4] Satyandra K. Gupta,et al. Geometric algorithms for containment analysis of rotational parts , 2005, Comput. Aided Des..
[5] Translative and kinematic integral formulae for support functions , 1995 .
[6] W. Weil. Integral Geometric Tools for Stochastic Geometry , 2007 .
[7] T. Ohmoto. AN ELEMENTARY REMARK ON THE INTEGRAL WITH RESPECT TO EULER CHARACTERISTICS OF PROJECTIVE HYPERPLANE SECTIONS : Dedicated to Professor Shoji Tsuboi on the occasion of his 60th birthday , 2003 .
[8] Joseph A. Wolf. Spaces of Constant Curvature , 1984 .
[9] P. Mani-Levitska. A simple proof of the kinematic formula , 1988 .
[10] A. Bernig. A Hadwiger-Type Theorem for the Special Unitary Group , 2008, 0801.1606.
[11] R. E. Miles. THE FUNDAMENTAL FORMULA OF BLASCHKE IN INTEGRAL GEOMETRY AND GEOMETRICAL PROBABILITY, AND ITS ITERATION, FOR DOMAINS WITH FIXED ORIENTATIONS , 1974 .
[12] G. Boothroyd,et al. Assembly Automation and Product Design , 1991 .
[13] E. Czuber. Geometrische Wahrscheinlichkeiten und Mittelwerte , 1884 .
[14] V. Benes,et al. Stochastic Geometry: Selected Topics , 2004 .
[15] Yuliy Baryshnikov,et al. Target Enumeration via Euler Characteristic Integrals , 2009, SIAM J. Appl. Math..
[16] W. Weil,et al. Stochastic and Integral Geometry , 2008 .
[17] H. Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .
[18] G. Solanes. Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces , 2005 .
[19] Aoyong Wuhan. A SUFFICIENT CONDITION FOR ONE CONVEX BODY CONTAINING ANOTHER , 1988 .
[20] R. Adler,et al. Random Fields and Geometry , 2007 .
[21] Ambartzumian,et al. Combinatorial Integral Geometry: With Applications to Mathematical Stereology , 1982 .
[22] A. H. Redford,et al. Mechanized assembly : fundamentals of parts feeding, orientation, and mechanized assembly , 1968 .
[23] A short proof of principal kinematic formula and extensions , 1990 .
[24] E. Harding,et al. Stochastic Geometry: A Tribute to the Memory of Rollo Davidson , 1974 .
[25] Arthur C. Sanderson,et al. Parts entropy methods for robotic assembly system design , 1984, ICRA.
[26] H. Führ. Hausdorff–Young Inequalities for Group Extensions , 2006, Canadian Mathematical Bulletin.
[27] R. Langevin,et al. Polar Varieties and Integral Geometry , 1982 .
[28] R. Ambartzumian. Stochastic geometry from the standpoint of integral geometry , 1977, Advances in Applied Probability.
[29] S. Glasauer. Translative and kinematic integral formulae concerning the convex hull operation , 1998 .
[30] Mixed curvature measures for sets of positive reach and a translative integral formula , 1995 .
[31] Susan A. Murphy,et al. Monographs on statistics and applied probability , 1990 .
[32] R. Schneider. Kinematic measures for sets of colliding convex Bodies , 1978 .
[33] Adrian Baddeley,et al. Stochastic Geometry: An Introduction and Reading-List , 1982 .
[34] Jati K. Sengupta,et al. Introduction to Information , 1993 .
[35] P. Goodey,et al. Intersection bodies and ellipsoids , 1995 .
[36] A. Nijenhuis. On Chern's kinematic formula in integral geometry , 1974 .
[37] W. Weil,et al. Translative and Kinematic Integral Formulae for Curvature Measures , 1986 .
[38] Adrian Baddeley,et al. Stereology for Statisticians , 2004 .
[39] L. Santaló. Integral geometry and geometric probability , 1976 .
[40] T. Bonnesen,et al. Theorie der Konvexen Körper , 1934 .
[41] W. H. Young. On the Multiplication of Successions of Fourier Constants , 1912 .
[42] Yanxi Liu,et al. Symmetry groups in analysis of assembly kinematics , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.
[43] Sufficient conditions for one domain to contain another in a space of constant curvature , 1998 .
[44] De-lin Ren,et al. Topics in Integral Geometry , 1994 .
[45] Matthew T. Mason,et al. An exploration of sensorless manipulation , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.
[46] Gregory S. Chirikjian,et al. Entropy, symmetry, and the difficulty of self-replication , 2022, Artificial Life and Robotics.
[47] J. Fournier. Sharpness in Young’s inequality for convolution , 1977 .
[48] D. Stoyan,et al. Applied Stochastic Geometry: A Survey (Invited Paper) , 1979 .
[49] H. Groemer. On translative integral geometry , 1977 .
[50] Sukhan Lee,et al. Computer-Aided Mechanical Assembly Planning , 1991 .
[51] Masud Mansuripur,et al. Introduction to information theory , 1986 .
[52] H. Hadwiger. Altes und Neues über konvexe Körper , 1955 .
[53] Daniel A. Klain,et al. Introduction to Geometric Probability , 1997 .
[54] Jiazu Zhou. When can one domain enclose another in 3? , 1995, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[55] A Translative Integral Formula for Absolute Curvature Measures , 2001 .
[56] S. Chern. On the Kinematic Formula in the Euclidean Space of N Dimensions , 1952 .
[57] T. Shifrin. The kinematic formula in complex integral geometry , 1981 .
[58] François Baccelli,et al. Stochastic geometry and architecture of communication networks , 1997, Telecommun. Syst..
[59] Geoffrey Boothroyd. Assembly Automation and Product Design, Second Edition (Manufacturing Engineering and Materials Processing) , 2005 .
[60] Oleg Viro,et al. Some integral calculus based on Euler characteristic , 1988 .
[61] D. Stoyan,et al. Stochastic Geometry and Its Applications , 1989 .
[62] Shiing-Shen Chern,et al. On the Kinematic Formula in Integral Geometry , 1966 .
[63] Ralph Howard,et al. The kinematic formula in Riemannian homogeneous spaces , 1993 .
[64] H. Fédérer. Some integralgeometric theorems , 1954 .
[65] Franz E Schuster. Convolutions and multiplier transformations of convex bodies , 2007, 1207.7252.
[66] Gregory S. Chirikjian,et al. Error propagation on the Euclidean group with applications to manipulator kinematics , 2006, IEEE Transactions on Robotics.
[67] P. Goodey,et al. Translative integral formulae for convex bodies , 1987 .
[68] W. Blaschke. Vorlesungen über Integralgeometrie , 1937 .
[69] Jonathan E. Taylor. A gaussian kinematic formula , 2006, math/0602545.
[70] G. Chirikjian,et al. Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .