The “independent components” of natural scenes are edge filters

[1]  Erkki Oja,et al.  A class of neural networks for independent component analysis , 1997, IEEE Trans. Neural Networks.

[2]  Te-Won Lee,et al.  Blind Separation of Delayed and Convolved Sources , 1996, NIPS.

[3]  B. Olshausen Learning linear, sparse, factorial codes , 1996 .

[4]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[5]  Kari Torkkola,et al.  Blind separation of convolved sources based on information maximization , 1996, Neural Networks for Signal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop.

[6]  R. Baddeley,et al.  Searching for filters with 'interesting' output distributions: an uninteresting direction to explore? , 1996, Network.

[7]  R W Prager,et al.  Development of low entropy coding in a recurrent network. , 1996, Network.

[8]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[9]  T J Sejnowski,et al.  Learning the higher-order structure of a natural sound. , 1996, Network.

[10]  Jürgen Schmidhuber,et al.  Semilinear Predictability Minimization Produces Well-Known Feature Detectors , 1996, Neural Computation.

[11]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[12]  D. Field,et al.  Natural Image Statistics and Eecient Coding , 1996 .

[13]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[14]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[15]  J. Karhunen,et al.  Neural Estimation of Basis Vectors in Independent Component Analysis , 1995 .

[16]  Harel Z. Shouval,et al.  Formation and Organization of Receptive fields, with an input Environment Composed of Natural Scenes , 1995 .

[17]  C. Fyfe,et al.  Finding compact and sparse-distributed representations of visual images , 1995 .

[18]  A. J. Bell,et al.  Fast blind separation based on information theory , 1995 .

[19]  Andrzej Cichocki,et al.  Robust learning algorithm for blind separation of signals , 1994 .

[20]  C. C. Law,et al.  Formation of receptive fields in realistic visual environments according to the Bienenstock, Cooper, and Munro (BCM) theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[22]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[23]  Horace Barlow,et al.  What is the computational goal of the neocortex , 1994 .

[24]  J. Nadal,et al.  Nonlinear neurons in the low-noise limit: a factorial code maximizes information transfer Network 5 , 1994 .

[25]  D. Ruderman The statistics of natural images , 1994 .

[26]  J. Nadal Non linear neurons in the low noise limit : a factorial code maximizes information transferJean , 1994 .

[27]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[28]  Joseph J. Atick,et al.  Convergent Algorithm for Sensory Receptive Field Development , 1993, Neural Computation.

[29]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[30]  Ralph Linsker,et al.  Local Synaptic Learning Rules Suffice to Maximize Mutual Information in a Linear Network , 1992, Neural Computation.

[31]  Nathan Intrator,et al.  Feature Extraction Using an Unsupervised Neural Network , 1992, Neural Computation.

[32]  Dinh Tuan Pham,et al.  Separation of a mixture of independent sources through a maximum likelihood approach , 1992 .

[33]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[34]  Anthony J. Bell,et al.  Self-organization in Real Neurons: Anti-Hebb in 'Channel Space'? , 1991, NIPS.

[35]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[36]  Colin Blakemore,et al.  Vision: Coding and Efficiency , 1991 .

[37]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[38]  W. Bialek,et al.  Optimal Sampling of Natural Images: A Design Principle for the Visual System , 1990, NIPS 1990.

[39]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[40]  Jirí Benes,et al.  On neural networks , 1990, Kybernetika.

[41]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[42]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[43]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[44]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[45]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[46]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[48]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[49]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[50]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[51]  M. C. GOODALL,et al.  Performance of a Stochastic Net , 1960, Nature.