Lokale Kollisionsvermeidung für mobile Roboter mittels künstlicher harmonischer Dipol-Potentiale

Grundlage der Autonomie mobiler Roboter ist ein Regelungssystem für Punkt-zu-Punkt-Bewegungen. Die Bewegungsaufgabe wird in die drei Teilaufgaben ,globale Planung', .lokaleKollisionsvermeidung'und,robuste Bewegungsregelung' unterteilt, die zusammen ein hierarchisches Regelungskonzept bilden. Dieser Artikel beschreibt den Einsatz künstlicher harmonischer Dipol-Potentialen auf der mittleren Hierarchieebene zur lokalen Kollisionsvermeidung und die zugehörigen Schnittstellen zu den beiden anderen Ebenen. Das vollständige Regelungskonzept ist ausführlich in [7] behandelt.

[1]  J. Guldner,et al.  Sliding mode control for gradient tracking and robot navigation using artificial potential fields , 1995, IEEE Trans. Robotics Autom..

[2]  Giuseppe Oriolo,et al.  Local incremental planning for nonholonomic mobile robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[3]  Koren,et al.  Real-Time Obstacle Avoidance for Fast Mobile Robots , 2022 .

[4]  Vadim I. Utkin,et al.  On the navigation of mobile robots in narrow passages: A general framework based on sliding mode theory , 1994 .

[5]  Rudolf Bauer,et al.  Autonomous Low-Cost Mobile Robots for Complex Non-Production Environments , 1993 .

[6]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[7]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[8]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[9]  Maria L. Gini,et al.  Why is it so difficult for a robot to pass through a doorway using ultrasonic sensors? , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[10]  Günther Schmidt,et al.  Mobile Robot Navigation In A Dynamic World Using An Unsteady Diffusion Equation Strategy , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Vadim I. Utkin,et al.  A three-layered hierarchical path control system for mobile robots: Algorithms and experiments , 1995, Robotics Auton. Syst..

[12]  Robert B. Tilove,et al.  Local obstacle avoidance for mobile robots based on the method of artificial potentials , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[13]  Jean-Jacques E. Slotine,et al.  Sliding controller design for non-linear systems , 1984 .

[14]  Wendelin Feiten,et al.  Intelligent low-cost mobility , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[15]  Didier Keymeulen,et al.  The fluid dynamics applied to mobile robot motion: the stream field method , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[16]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[17]  S. Arimoto,et al.  An Implicit Approach for a Mobile Robot Running on a Force Field without Generation of Local Minima , 1990 .

[18]  Vadim I. Utkin,et al.  Obstacle avoidance in R/sup n/ based on artificial harmonic potential fields , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[19]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[20]  Wendelin Feiten,et al.  Robust obstacle avoidance in unknown and cramped environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.