Tracking and Coordination of Multiple Agents Using Sensor Networks: System Design, Algorithms and Experiments

This paper considers the problem of pursuit evasion games (PEGs), where the objective of a group of pursuers is to chase and capture a group of evaders in minimum time with the aid of a sensor network. The main challenge in developing a real-time control system using sensor networks is the inconsistency in sensor measurements due to packet loss, communication delay, and false detections. We address this challenge by developing a real-time hierarchical control system, named LochNess, which decouples the estimation of evader states from the control of pursuers via multiple layers of data fusion. The multiple layers of data fusion convert noisy, inconsistent, and bursty sensor measurements into a consistent set of fused measurements. Three novel algorithms are developed for LochNess: multisensor fusion, hierarchical multitarget tracking, and multiagent coordination algorithms. The multisensor fusion algorithm converts correlated sensor measurements into position estimates, the hierarchical multitarget tracking algorithm based on Markov chain Monte Carlo data association (MCMCDA) tracks an unknown number of targets, and the multiagent coordination algorithm coordinates pursuers to chase and capture evaders using robust minimum-time control. The control system LochNess is evaluated in simulation and successfully demonstrated using a large-scale outdoor sensor network deployment

[1]  Paulo Tabuada,et al.  Hierarchical trajectory refinement for a class of nonlinear systems , 2005, Autom..

[2]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[3]  Robert W. Sittler,et al.  An Optimal Data Association Problem in Surveillance Theory , 1964, IEEE Transactions on Military Electronics.

[4]  Deborah Estrin,et al.  Habitat monitoring with sensor networks , 2004, CACM.

[5]  David E. Culler,et al.  The nesC language: A holistic approach to networked embedded systems , 2003, PLDI.

[6]  Andreas Willig,et al.  Wireless Technology in Industrial Networks , 2005, Proceedings of the IEEE.

[7]  Igor Skrjanc,et al.  Time optimal path planning considering acceleration limits , 2003, Robotics Auton. Syst..

[8]  Mark Coates,et al.  Distributed particle filters for sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[9]  P. Tsiotras,et al.  Optimal velocity profile generation for given acceleration limits: receding horizon implementation , 2005, Proceedings of the 2005, American Control Conference, 2005..

[10]  S. Sastry,et al.  Decentralized Reflective Model Predictive Control of Multiple Flying Robots in Dynamic Environment , 2022 .

[11]  Bruno Sinopoli,et al.  Distributed control applications within sensor networks , 2003, Proc. IEEE.

[12]  Shashi Phoha,et al.  Tracking multiple targets with self-organizing distributed ground sensors , 2004, J. Parallel Distributed Comput..

[13]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[14]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[15]  Roberto Zanasi,et al.  Discrete minimum time tracking problem for a chain of three integrators with bounded input , 2003, Autom..

[16]  Vinayak S. Naik,et al.  A line in the sand: a wireless sensor network for target detection, classification, and tracking , 2004, Comput. Networks.

[17]  Zack J. Butler,et al.  Tracking a moving object with a binary sensor network , 2003, SenSys '03.

[18]  ZhaoFeng,et al.  Collaborative in-network processing for target tracking , 2003 .

[19]  Mark G. Terwilliger,et al.  Overview of Sensor Networks , 2004 .

[20]  David E. Culler,et al.  Design of a wireless sensor network platform for detecting rare, random, and ephemeral events , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[21]  S. Shankar Sastry,et al.  Markov Chain Monte Carlo Data Association for Multi-Target Tracking , 2009, IEEE Transactions on Automatic Control.

[22]  Lui Sha,et al.  Dynamic clustering for acoustic target tracking in wireless sensor networks , 2003, IEEE Transactions on Mobile Computing.

[23]  Leonidas J. Guibas,et al.  A Distributed Algorithm for Managing Multi-target Identities in Wireless Ad-hoc Sensor Networks , 2003, IPSN.

[24]  Gaurav S. Sukhatme,et al.  Connecting the Physical World with Pervasive Networks , 2002, IEEE Pervasive Comput..

[25]  Joseph M. Kahn,et al.  An autonomous 16 mm/sup 3/ solar-powered node for distributed wireless sensor networks , 2002, Proceedings of IEEE Sensors.

[26]  David E. Culler,et al.  Perpetual environmentally powered sensor networks , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[27]  L. El Ghaoui,et al.  Algorithms for air traffic flow management under stochastic environments , 2004, Proceedings of the 2004 American Control Conference.

[28]  D. McErlean,et al.  Distributed detection and tracking in sensor networks , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[29]  S. Shankar Sastry,et al.  A Hierarchical Multiple-Target Tracking Algorithm for Sensor Networks , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[30]  EstrinDeborah,et al.  Connecting the Physical World with Pervasive Networks , 2002 .

[31]  T. Başar,et al.  Dynamic Noncooperative Game Theory, 2nd Edition , 1998 .

[32]  H. Hermes,et al.  Foundations of optimal control theory , 1968 .

[33]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[34]  J. B. Collins,et al.  Efficient gating in data association with multivariate Gaussian distributed states , 1992 .

[35]  S. Shankar Sastry,et al.  Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation , 2002, IEEE Trans. Robotics Autom..

[36]  S. Shankar Sastry,et al.  Markov Chain Monte Carlo Data Association for Multiple-Target Tracking , 2005, CDC 2005.

[37]  David E. Culler,et al.  Telos: enabling ultra-low power wireless research , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[38]  Matthew Lease,et al.  Making Sensor Networks Practical with Robots , 2002, Pervasive.

[39]  F. Tahan From the authors , 2007, European Respiratory Journal.

[40]  Mani Srivastava,et al.  Overview of sensor networks , 2004 .

[41]  Y. Bar-Shalom Tracking and data association , 1988 .

[42]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[43]  J.P. Hespanha,et al.  Multiple-agent probabilistic pursuit-evasion games , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[44]  Sylvia Richardson,et al.  Markov chain concepts related to sampling algorithms , 1995 .

[45]  S. Shankar Sastry,et al.  Design and implementation of a sensor network system for vehicle tracking and autonomous interception , 2005, Proceeedings of the Second European Workshop on Wireless Sensor Networks, 2005..

[46]  Michael Cw Kintner-Meyer Opportunities of Wireless Sensors and Controls for Building Operation , 2005 .

[47]  Mike Horton,et al.  The platforms enabling wireless sensor networks , 2004, CACM.

[48]  Feng Zhao,et al.  Collaborative In-Network Processing for Target Tracking , 2003, EURASIP J. Adv. Signal Process..

[49]  Calin Belta,et al.  Discrete abstractions for robot motion planning and control in polygonal environments , 2005, IEEE Transactions on Robotics.

[50]  Yaacov Ritov,et al.  Tracking Many Objects with Many Sensors , 1999, IJCAI.

[51]  Gregory J. Pottie,et al.  Instrumenting the world with wireless sensor networks , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[52]  Zhiqiang Gao,et al.  On discrete time optimal control: a closed-form solution , 2004, Proceedings of the 2004 American Control Conference.

[53]  Feng Zhao,et al.  Distributed Group Management for Track Initiation and Maintenance in Target Localization Applications , 2003, IPSN.

[54]  A. Saccon Minimum Time Maneuver for a Nonholonomic Car with Acceleration Constraints: Preliminary Results , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[55]  Yaakov Bar-Shalom,et al.  Interacting multiple model tracking with target amplitude feature , 1993 .

[56]  Bruce H. Krogh,et al.  Lightweight detection and classification for wireless sensor networks in realistic environments , 2005, SenSys '05.

[57]  David E. Culler,et al.  The dynamic behavior of a data dissemination protocol for network programming at scale , 2004, SenSys '04.

[58]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[59]  S. Kim,et al.  Trio: enabling sustainable and scalable outdoor wireless sensor network deployments , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[60]  Songhwai Oh,et al.  Markov chain Monte Carlo data association for general multiple-target tracking problems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[61]  Deborah Estrin,et al.  Guest Editors' Introduction: Overview of Sensor Networks , 2004, Computer.

[62]  S. Shankar Sastry,et al.  Tracking on a graph , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[63]  Feng Zhao,et al.  Distributed state representation for tracking problems in sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[64]  Francis Sullivan,et al.  The Metropolis Algorithm , 2000, Computing in Science & Engineering.

[65]  David E. Culler,et al.  Design of an application-cooperative management system for wireless sensor networks , 2005, Proceeedings of the Second European Workshop on Wireless Sensor Networks, 2005..

[66]  Yu Hen Hu,et al.  Detection, classification, and tracking of targets , 2002, IEEE Signal Process. Mag..

[67]  Feng Zhao,et al.  Distributed multiple target tracking and data association in ad hoc sensor networks , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[68]  Aubrey B. Poore,et al.  Multidimensional Assignments and Multitarget Tracking , 1993, Partitioning Data Sets.

[69]  Leonidas J. Guibas,et al.  Collaborative signal and information processing: an information-directed approach , 2003 .

[70]  Songhwai Oh,et al.  A Scalable Real-Time Multiple-Target Tracking Algorithm for Sensor Networks , 2005 .

[71]  Leonidas J. Guibas,et al.  A Visibility-Based Pursuit-Evasion Problem , 1999, Int. J. Comput. Geom. Appl..