Label-Embedding for Attribute-Based Classification

Attributes are an intermediate representation, which enables parameter sharing between classes, a must when training data is scarce. We propose to view attribute-based image classification as a label-embedding problem: each class is embedded in the space of attribute vectors. We introduce a function which measures the compatibility between an image and a label embedding. The parameters of this function are learned on a training set of labeled samples to ensure that, given an image, the correct classes rank higher than the incorrect ones. Results on the Animals With Attributes and Caltech-UCSD-Birds datasets show that the proposed framework outperforms the standard Direct Attribute Prediction baseline in a zero-shot learning scenario. The label embedding framework offers other advantages such as the ability to leverage alternative sources of information in addition to attributes (e.g. class hierarchies) or to transition smoothly from zero-shot learning to learning with large quantities of data.

[1]  Cordelia Schmid,et al.  Combining attributes and Fisher vectors for efficient image retrieval , 2011, CVPR 2011.

[2]  Bernt Schiele,et al.  What Helps Where \textendash And Why? Semantic Relatedness for Knowledge Transfer , 2010, CVPR 2010.

[3]  Kilian Q. Weinberger,et al.  Large Margin Taxonomy Embedding for Document Categorization , 2008, NIPS.

[4]  Xian-Sheng Hua,et al.  Ranking Model Adaptation for Domain-Specific Search , 2009, IEEE Transactions on Knowledge and Data Engineering.

[5]  Florent Perronnin,et al.  High-dimensional signature compression for large-scale image classification , 2011, CVPR 2011.

[6]  Pietro Perona,et al.  Multiclass recognition and part localization with humans in the loop , 2011, 2011 International Conference on Computer Vision.

[7]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[8]  Bernt Schiele,et al.  What helps where – and why? Semantic relatedness for knowledge transfer , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Yejin Choi,et al.  Baby talk: Understanding and generating simple image descriptions , 2011, CVPR 2011.

[10]  Gabriela Csurka,et al.  Tree-Structured CRF Models for Interactive Image Labeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Andrew Zisserman,et al.  Learning Visual Attributes , 2007, NIPS.

[12]  Xiaodong Yu,et al.  Attribute-Based Transfer Learning for Object Categorization with Zero/One Training Example , 2010, ECCV.

[13]  Shimon Ullman,et al.  Uncovering shared structures in multiclass classification , 2007, ICML '07.

[14]  Yang Wang,et al.  A Discriminative Latent Model of Object Classes and Attributes , 2010, ECCV.

[15]  Pietro Perona,et al.  Visual Recognition with Humans in the Loop , 2010, ECCV.

[16]  Subhransu Maji,et al.  Max-margin additive classifiers for detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[17]  Gang Wang,et al.  Joint learning of visual attributes, object classes and visual saliency , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[18]  Yoshua Bengio,et al.  Zero-data Learning of New Tasks , 2008, AAAI.

[19]  Larry S. Davis,et al.  Image ranking and retrieval based on multi-attribute queries , 2011, CVPR 2011.

[20]  François Fouss,et al.  The Principal Components Analysis of a Graph, and Its Relationships to Spectral Clustering , 2004, ECML.

[21]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[22]  Jason Weston,et al.  Label Embedding Trees for Large Multi-Class Tasks , 2010, NIPS.

[23]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[24]  Shree K. Nayar,et al.  FaceTracer: A Search Engine for Large Collections of Images with Faces , 2008, ECCV.

[25]  Christoph H. Lampert,et al.  Augmented Attribute Representations , 2012, ECCV.

[26]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[27]  Gabriela Csurka,et al.  Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost , 2012, ECCV.

[28]  Andrew Zisserman,et al.  The devil is in the details: an evaluation of recent feature encoding methods , 2011, BMVC.

[29]  Daniel,et al.  Default Probability , 2004 .

[30]  Andrew Zisserman,et al.  Sparse kernel approximations for efficient classification and detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Bernhard Schölkopf,et al.  Kernel Dependency Estimation , 2002, NIPS.

[32]  Bernt Schiele,et al.  Evaluating knowledge transfer and zero-shot learning in a large-scale setting , 2011, CVPR 2011.

[33]  Jason Weston,et al.  Large scale image annotation: learning to rank with joint word-image embeddings , 2010, Machine Learning.

[34]  Thomas Deselaers,et al.  Visual and semantic similarity in ImageNet , 2011, CVPR 2011.

[35]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Andrew Zisserman,et al.  Efficient additive kernels via explicit feature maps , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Cordelia Schmid,et al.  Product Quantization for Nearest Neighbor Search , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[39]  Vinod Nair,et al.  A joint learning framework for attribute models and object descriptions , 2011, 2011 International Conference on Computer Vision.

[40]  John Langford,et al.  Multi-Label Prediction via Compressed Sensing , 2009, NIPS.

[41]  Geoffrey E. Hinton,et al.  Zero-shot Learning with Semantic Output Codes , 2009, NIPS.

[42]  Daniel N. Osherson,et al.  Joshua Stern, Ormond Wilkie, Michael Stob, Edward E. Smith: Default Probability , 1991, Cogn. Sci..

[43]  Ali Farhadi,et al.  Describing objects by their attributes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Vicente Ordonez,et al.  Im2Text: Describing Images Using 1 Million Captioned Photographs , 2011, NIPS.