Scalar Multiplication on Elliptic Curves Defined over Fields of Small Odd Characteristic

This paper explores elliptic curve cryptosystems over fields of small odd characteristic p = 3 or 5. We establish formulas multiplying by p a random point on an ordinary curve defined over $\mathbb{F}_{p^{n}}$, thereby improving scalar multiplication on random and special curves for p = 3 or 5 using a p-Multiply-and-Add method. We study the complexity of our method and compare it to other schemes.

[1]  Victor S. Miller,et al.  Use of Elliptic Curves in Cryptography , 1985, CRYPTO.

[2]  Nigel P. Smart Elliptic Curve Cryptosystems over Small Fields of Odd Characteristic , 1999, Journal of Cryptology.

[3]  Nigel P. Smart,et al.  Point Multiplication on Ordinary Elliptic Curves over Fields of Characteristic Three , 2003, Applicable Algebra in Engineering, Communication and Computing.

[4]  Martin E. Hellman,et al.  An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[5]  Christof Paar,et al.  Cryptographic Hardware and Embedded Systems - CHES 2006, 8th International Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings , 2006, CHES.

[6]  Atsuko Miyaji,et al.  Efficient elliptic curve exponentiation , 1997, ICICS.

[7]  Alfred Menezes,et al.  Software Implementation of Elliptic Curve Cryptography over Binary Fields , 2000, CHES.

[8]  S. Vanstone,et al.  OPTIMAL NORMAL BASES IN GF(p”)* , 2002 .

[9]  Colin Boyd,et al.  Advances in Cryptology - ASIACRYPT 2001 , 2001 .

[10]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[11]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[12]  Nigel P. Smart,et al.  Hardware Implementation of Finite Fields of Characteristic Three , 2002, CHES.

[13]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[14]  Christof Paar,et al.  Cryptographic Hardware and Embedded Systems - CHES 2002 , 2003, Lecture Notes in Computer Science.

[15]  J. Pollard,et al.  Monte Carlo methods for index computation () , 1978 .

[16]  Alfred Menezes,et al.  Software Implementation of the NIST Elliptic Curves Over Prime Fields , 2001, CT-RSA.

[17]  David Naccache,et al.  Topics in Cryptology — CT-RSA 2001 , 2001, Lecture Notes in Computer Science.

[18]  Atsuko Miyaji,et al.  Efficient Elliptic Curve Exponentiation Using Mixed Coordinates , 1998, ASIACRYPT.

[19]  T. Itoh,et al.  A Fast Algorithm for Computing Multiplicative Inverses in GF(2^m) Using Normal Bases , 1988, Inf. Comput..

[20]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[21]  Nigel P. Smart,et al.  Software Implementation of Finite Fields of Characteristic Three, for Use in Pairing-based Cryptosystems , 2002 .

[22]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[23]  N. Koblitz Elliptic curve cryptosystems , 1987 .

[24]  Ronald C. Mullin,et al.  Optimal normal bases in GF(pn) , 1989, Discret. Appl. Math..

[25]  C. Diem The GHS-attack in odd characteristic , 2003 .

[26]  Nigel P. Smart,et al.  Elliptic Curves over small fields of odd characteristic , 1999 .

[27]  T. Elgamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.

[28]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[29]  Christof Paar,et al.  Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms , 1998, CRYPTO.

[30]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[31]  Aggelos Kiayias,et al.  Self Protecting Pirates and Black-Box Traitor Tracing , 2001, CRYPTO.