Autonomous discovery in the chemical sciences part I: Progress

This two-part review examines how automation has contributed to different aspects of discovery in the chemical sciences. In this first part, we describe a classification for discoveries of physical matter (molecules, materials, devices), processes, and models and how they are unified as search problems. We then introduce a set of questions and considerations relevant to assessing the extent of autonomy. Finally, we describe many case studies of discoveries accelerated by or resulting from computer assistance and automation from the domains of synthetic chemistry, drug discovery, inorganic chemistry, and materials science. These illustrate how rapid advancements in hardware automation and machine learning continue to transform the nature of experimentation and modelling. Part two reflects on these case studies and identifies a set of open challenges for the field.

[1]  Tim Chapman Lab automation and robotics: Automation on the move , 2003, Nature.

[2]  Edward O. Pyzer-Knapp,et al.  Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery , 2015 .

[3]  Magnus Rueping,et al.  Self-Optimizing Reactor Systems: Algorithms, On-line Analytics, Setups, and Strategies for Accelerating Continuous Flow Process Optimization , 2014 .

[4]  Bing Li,et al.  Chemistry informer libraries: a chemoinformatics enabled approach to evaluate and advance synthetic methods† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc04751j , 2016, Chemical science.

[5]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[6]  Paul D Lyne,et al.  Structure-based virtual screening: an overview. , 2002, Drug discovery today.

[7]  Atsushi Sugimoto,et al.  An automated-flow microreactor system for quick optimization and production: application of 10- and 100-gram order productions of a matrix metalloproteinase inhibitor using a Sonogashira coupling reaction , 2009 .

[8]  Antonio Lavecchia,et al.  Machine-learning approaches in drug discovery: methods and applications. , 2015, Drug discovery today.

[9]  Elizabeth Farrant,et al.  Integrated Synthesis and Testing of Substituted Xanthine Based DPP4 Inhibitors: Application to Drug Discovery. , 2013, ACS medicinal chemistry letters.

[10]  Clara D. Christ,et al.  Mining Electronic Laboratory Notebooks: Analysis, Retrosynthesis, and Reaction Based Enumeration , 2012, J. Chem. Inf. Model..

[11]  G. Böhm,et al.  Quantitative analysis of protein far UV circular dichroism spectra by neural networks. , 1992, Protein engineering.

[12]  Stephen H. Muggleton,et al.  2020 Computing: Exceeding human limits , 2006, Nature.

[13]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[14]  C. E. Berkoff,et al.  Chemical process optimization by computer — a self-directed chemical synthesis system , 1978 .

[15]  Piotr Giza,et al.  Automated discovery systems and the inductivist controversy , 2017, J. Exp. Theor. Artif. Intell..

[16]  A. Dömling,et al.  The discovery of new isocyanide-based multi-component reactions. , 2000, Current opinion in chemical biology.

[17]  Zachary W. Ulissi,et al.  Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution , 2018, Nature Catalysis.

[18]  Alexandr Zubov,et al.  Closed-Loop Multitarget Optimization for Discovery of New Emulsion Polymerization Recipes , 2015, Organic process research & development.

[19]  David R Spring,et al.  Diversity-oriented synthesis. , 2009, Chemical record.

[20]  Dragos Horvath,et al.  In Silico Fragment-Based Drug Discovery: Setup and Validation of a Fragment-to-Lead Computational Protocol Using S4MPLE , 2013, J. Chem. Inf. Model..

[21]  Guido Sello,et al.  Reaction prediction: the suggestions of the Beppe program , 1992, J. Chem. Inf. Comput. Sci..

[22]  F. Arnold Design by Directed Evolution , 1998 .

[23]  Anthony D. Keefe,et al.  DNA-encoded chemistry: enabling the deeper sampling of chemical space , 2016, Nature Reviews Drug Discovery.

[24]  Anthony P. F. Cook,et al.  Computer‐aided synthesis design: 40 years on , 2012 .

[25]  John C. deMello,et al.  Tuning reaction products by constrained optimisation , 2017 .

[26]  Anat Milo,et al.  The Development of Multidimensional Analysis Tools for Asymmetric Catalysis and Beyond. , 2016, Accounts of chemical research.

[27]  Robert Langer,et al.  High throughput methods applied in biomaterial development and discovery. , 2010, Biomaterials.

[28]  Jian Ji,et al.  Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics , 2018, Metabolites.

[29]  Klavs F. Jensen,et al.  Optimum catalyst selection over continuous and discrete process variables with a single droplet microfluidic reaction platform , 2018 .

[30]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[31]  Dragos Horvath,et al.  Expert System for Predicting Reaction Conditions: The Michael Reaction Case , 2015, J. Chem. Inf. Model..

[32]  W. Janzen,et al.  Screening technologies for small molecule discovery: the state of the art. , 2014, Chemistry & biology.

[33]  Galit Shmueli,et al.  To Explain or To Predict? , 2010, 1101.0891.

[34]  Marta M. Stepniewska-Dziubinska,et al.  Development and evaluation of a deep learning model for protein–ligand binding affinity prediction , 2017, Bioinform..

[35]  Gisbert Schneider,et al.  Virtual screening: an endless staircase? , 2010, Nature Reviews Drug Discovery.

[36]  Cícero Nogueira dos Santos,et al.  Boosting Docking-Based Virtual Screening with Deep Learning , 2016, J. Chem. Inf. Model..

[37]  Leroy Cronin,et al.  Intuition-Enabled Machine Learning Beats the Competition When Joint Human-Robot Teams Perform Inorganic Chemical Experiments , 2019, J. Chem. Inf. Model..

[38]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid , 2011 .

[39]  Eric S Isbrandt,et al.  High Throughput Strategies for the Discovery and Optimization of Catalytic Reactions. , 2019, Angewandte Chemie.

[40]  A. Hopkins,et al.  Navigating chemical space for biology and medicine , 2004, Nature.

[41]  Wilhelm F. Maier,et al.  IR‐thermographische Erkennung katalytischer Aktivität in kombinatorischen Bibliotheken heterogener Katalysatoren , 1998 .

[42]  Anthony Goodrow,et al.  Transition state-finding strategies for use with the growing string method. , 2009, The Journal of chemical physics.

[43]  Diogo M. Camacho,et al.  Next-Generation Machine Learning for Biological Networks , 2018, Cell.

[44]  Stefanie Jegelka,et al.  Virtual screening of inorganic materials synthesis parameters with deep learning , 2017, npj Computational Materials.

[45]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[46]  Thomas F. Miller,et al.  Transferability in Machine Learning for Electronic Structure via the Molecular Orbital Basis. , 2018, Journal of chemical theory and computation.

[47]  Shinji Nagasawa,et al.  Computer-Aided Screening of Conjugated Polymers for Organic Solar Cell: Classification by Random Forest. , 2018, The journal of physical chemistry letters.

[48]  Michael H. Abraham,et al.  Linear solvation energy relations , 1985 .

[49]  Liping Yu,et al.  Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. , 2014, Nature chemistry.

[50]  William H. Green,et al.  Using Machine Learning To Predict Suitable Conditions for Organic Reactions , 2018, ACS central science.

[51]  Peter Stone,et al.  Reinforcement learning , 2019, Scholarpedia.

[52]  Zengin,et al.  High-Throughput Testing of Heterogeneous Catalyst Libraries Using Array Microreactors and Mass Spectrometry. , 1999, Angewandte Chemie.

[53]  Alán Aspuru-Guzik,et al.  Closed-loop discovery platform integration is needed for artificial intelligence to make an impact in drug discovery , 2018, Expert opinion on drug discovery.

[54]  Dimitris C. Lagoudas,et al.  Multi-objective Bayesian materials discovery: Application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling , 2018, Materials & Design.

[55]  Zhengrong Zhu,et al.  Application of encoded library technology (ELT) to a protein-protein interaction target: discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists. , 2014, Bioorganic & medicinal chemistry.

[56]  Petra Schneider,et al.  From Complex Natural Products to Simple Synthetic Mimetics by Computational De Novo Design. , 2016, Angewandte Chemie.

[57]  Robert F. Murphy,et al.  Efficient Modeling and Active Learning Discovery of Biological Responses , 2013, PloS one.

[58]  M J Sternberg,et al.  Structure-activity relationships derived by machine learning: the use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Kevin K. Yang,et al.  Machine-learning-guided directed evolution for protein engineering , 2018, Nature Methods.

[60]  C. Jochum,et al.  Neue Anwendungsgebiete für Computer in der Chemie , 1979 .

[61]  Johann Gasteiger,et al.  Computer-assisted prediction of the degradation of chemicals: hydrolysis of amides and benzoylphenylureas , 1995 .

[62]  Luhua Lai,et al.  LigBuilder: A Multi-Purpose Program for Structure-Based Drug Design , 2000 .

[63]  A. Johnson,et al.  Some recent progress in the development of the LHASA computer system for organic synthesis design: Starting‐material‐oriented retrosynthetic analysis , 1992 .

[64]  Chien-Hsiu Lee,et al.  Artificial intelligence in research. , 2017, Science.

[65]  Sereina Riniker,et al.  Similarity maps - a visualization strategy for molecular fingerprints and machine-learning methods , 2013, Journal of Cheminformatics.

[66]  Raúl E. Valdés-Pérez,et al.  Principles of Human Computer Collaboration for Knowledge Discovery in Science , 1999, Artif. Intell..

[67]  Venkat Venkatasubramanian,et al.  Computer-aided molecular design using genetic algorithms , 1994 .

[68]  Markus Reiher,et al.  Error-Controlled Exploration of Chemical Reaction Networks with Gaussian Processes. , 2018, Journal of chemical theory and computation.

[69]  K. Tsuda,et al.  Hunting for Organic Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation Energies , 2018, ACS central science.

[70]  J. Frearson,et al.  HTS and hit finding in academia – from chemical genomics to drug discovery , 2009, Drug discovery today.

[71]  M. Rupp,et al.  Machine learning of molecular electronic properties in chemical compound space , 2013, 1305.7074.

[72]  Gregor Urban,et al.  Deep learning for chemical reaction prediction , 2018 .

[73]  William H. Green,et al.  Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods. , 2018, Journal of the American Chemical Society.

[74]  Reiner Sebastian Sprick,et al.  Mapping Binary Copolymer Property Space with Neural Networks , 2019 .

[75]  Yan Li,et al.  Comparative Assessment of Scoring Functions: The CASF-2016 Update , 2018, J. Chem. Inf. Model..

[76]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[77]  Johann Gasteiger,et al.  EROS A computer program for generating sequences of reactions , 1978 .

[78]  Edmund L. Gettier Is Justified True Belief Knowledge? , 1963, Arguing About Knowledge.

[79]  Ryan P. Adams,et al.  Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. , 2016, Nature materials.

[80]  Michael Becker,et al.  Eine Methode zum High‐Throughput‐Screening von enantioselektiven Katalysatoren , 1999 .

[81]  Igor I. Baskin,et al.  Structure-reactivity relationships in terms of the condensed graphs of reactions , 2014, Russian Journal of Organic Chemistry.

[82]  Connor W. Coley,et al.  SCScore: Synthetic Complexity Learned from a Reaction Corpus , 2018, J. Chem. Inf. Model..

[83]  Pedro J Ballester,et al.  Machine‐learning scoring functions to improve structure‐based binding affinity prediction and virtual screening , 2015, Wiley interdisciplinary reviews. Computational molecular science.

[84]  Friedrich Rippmann,et al.  Interpretable Deep Learning in Drug Discovery , 2019, Explainable AI.

[85]  Ross D. King,et al.  Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases , 2015, Journal of The Royal Society Interface.

[86]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[87]  Robert Langer,et al.  Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. , 2003, Journal of the American Chemical Society.

[88]  Noam Bernstein,et al.  Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics. , 2018, The journal of physical chemistry letters.

[89]  Brian L. DeCost,et al.  Accelerating Photovoltaic Materials Development via High-Throughput Experiments and Machine-Learning-Assisted Diagnosis , 2018, 1812.01025.

[90]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[91]  Klaus-Robert Müller,et al.  Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies. , 2013, Journal of chemical theory and computation.

[92]  Keith T. Taylor,et al.  ROBIA: a reaction prediction program. , 2005, Organic letters.

[93]  Johann Gasteiger,et al.  Computer‐Assisted Planning of Organic Syntheses: The Second Generation of Programs , 1996 .

[94]  Dario Neri,et al.  20 years of DNA-encoded chemical libraries. , 2011, Chemical communications.

[95]  B. Meredig,et al.  Materials science with large-scale data and informatics: Unlocking new opportunities , 2016 .

[96]  John F. Hartwig,et al.  A Simple, Multidimensional Approach to High-Throughput Discovery of Catalytic Reactions , 2011, Science.

[97]  Lu Zhang,et al.  From machine learning to deep learning: progress in machine intelligence for rational drug discovery. , 2017, Drug discovery today.

[98]  Alán Aspuru-Guzik,et al.  Phoenics: A Bayesian Optimizer for Chemistry , 2018, ACS central science.

[99]  William Stafford Noble,et al.  Machine learning applications in genetics and genomics , 2015, Nature Reviews Genetics.

[100]  D. Thompson,et al.  High throughput reaction screening using desorption electrospray ionization mass spectrometry† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04606e , 2018, Chemical science.

[101]  Matthew R. Hill,et al.  Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage , 2017, Chemistry of materials : a publication of the American Chemical Society.

[102]  Junzo Otera,et al.  Automated Synthesis: Development of a New Apparatus Friendly to Synthetic Chemists (MEDLEY) , 2000 .

[103]  Steven V Ley,et al.  Continuous flow reaction monitoring using an on-line miniature mass spectrometer. , 2012, Rapid communications in mass spectrometry : RCM.

[104]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[105]  Andrew McCallum,et al.  Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks , 2018, J. Chem. Inf. Model..

[106]  Katharine M. Flores,et al.  High-throughput discovery and characterization of multicomponent bulk metallic glass alloys , 2016 .

[107]  Andrew I. Cooper,et al.  Functional materials discovery using energy–structure–function maps , 2017, Nature.

[108]  Alexei Lapkin,et al.  Automatic discovery and optimization of chemical processes , 2015 .

[109]  Michael Gastegger,et al.  Machine learning molecular dynamics for the simulation of infrared spectra† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02267k , 2017, Chemical science.

[110]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[111]  Rafael Gómez-Bombarelli,et al.  Variational Coarse-Graining for Molecular Dynamics , 2018, ArXiv.

[112]  Anne E Carpenter,et al.  Opportunities and obstacles for deep learning in biology and medicine , 2017, bioRxiv.

[113]  J. Reymond The chemical space project. , 2015, Accounts of chemical research.

[114]  Chenru Duan,et al.  Strategies and Software for Machine Learning Accelerated Discovery in Transition Metal Chemistry , 2018, Industrial & Engineering Chemistry Research.

[115]  Krishna Rajan,et al.  Combinatorial Materials Sciences: Experimental Strategies for Accelerated Knowledge Discovery , 2008 .

[116]  Mathew D. Halls,et al.  High-throughput quantum chemistry and virtual screening for lithium ion battery electrolyte additives , 2010 .

[117]  Regina Barzilay,et al.  Prediction of Organic Reaction Outcomes Using Machine Learning , 2017, ACS central science.

[118]  Klavs F. Jensen,et al.  Automated Multitrajectory Method for Reaction Optimization in a Microfluidic System using Online IR Analysis , 2012 .

[119]  Plamen Angelov,et al.  RetroTransformDB: A Dataset of Generic Transforms for Retrosynthetic Analysis , 2018, Data.

[120]  Kevin Bateman,et al.  Nanomole-scale high-throughput chemistry for the synthesis of complex molecules , 2015, Science.

[121]  J. Dearden,et al.  QSAR modeling: where have you been? Where are you going to? , 2014, Journal of medicinal chemistry.

[122]  William H Green,et al.  Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods. , 2015, Journal of chemical theory and computation.

[123]  Mary L. Cummings,et al.  Collaborative Human-Automation Decision Making , 2009, Handbook of Automation.

[124]  Ross D. King,et al.  Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds , 2013, Open Biology.

[125]  A. deMello,et al.  Intelligent routes to the controlled synthesis of nanoparticles. , 2007, Lab on a chip.

[126]  J. Wulff,et al.  Reinvestigation of a robotically revealed reaction , 2019, Nature.

[127]  C. Adjiman,et al.  Computer-aided molecular design of solvents for accelerated reaction kinetics. , 2013, Nature chemistry.

[128]  James Theiler,et al.  Adaptive Strategies for Materials Design using Uncertainties , 2016, Scientific Reports.

[129]  Richard N. Zare,et al.  Optimizing Chemical Reactions with Deep Reinforcement Learning , 2017, ACS central science.

[130]  James Theiler,et al.  Accelerated search for materials with targeted properties by adaptive design , 2016, Nature Communications.

[131]  Marwin H. S. Segler,et al.  Modelling Chemical Reasoning to Predict Reactions , 2016, Chemistry.

[132]  J S Smith,et al.  ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost , 2016, Chemical science.

[133]  Lorenz M Mayr,et al.  Novel trends in high-throughput screening. , 2009, Current opinion in pharmacology.

[134]  Kipton Barros,et al.  Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning , 2019, Nature Communications.

[135]  Gus L. W. Hart,et al.  Accelerating high-throughput searches for new alloys with active learning of interatomic potentials , 2018, Computational Materials Science.

[136]  Yang Wang,et al.  Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning , 2019, Science.

[137]  福井 謙一,et al.  Frontier orbitals and reaction paths : selected papers of Kenichi Fukui , 1997 .

[138]  Christopher J. Welch,et al.  MISER chromatography (multiple injections in a single experimental run): the chromatogram is the graph , 2010 .

[139]  Sergey Nikolenko,et al.  druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico. , 2017, Molecular pharmaceutics.

[140]  David A. Price,et al.  Ligand biological activity predicted by cleaning positive and negative chemical correlations , 2019, Proceedings of the National Academy of Sciences.

[141]  Johann Gasteiger,et al.  Neural networks and genetic algorithms in drug design , 2001 .

[142]  Gisbert Schneider,et al.  Designing Anticancer Peptides by Constructive Machine Learning , 2018, ChemMedChem.

[143]  David R. Liu,et al.  Reaction discovery enabled by DNA-templated synthesis and in vitro selection , 2004, Nature.

[144]  H. Simon,et al.  Studying Scientific Discovery by Computer Simulation , 1983, Science.

[145]  Yanli Wang,et al.  Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review , 2012, The AAPS Journal.

[146]  Robert Tibshirani,et al.  Chemical Space Mimicry for Drug Discovery , 2017, J. Chem. Inf. Model..

[147]  Adrià Cereto-Massagué,et al.  Molecular fingerprint similarity search in virtual screening. , 2015, Methods.

[148]  Johann Gasteiger,et al.  Prediction of 1H NMR chemical shifts using neural networks. , 2002, Analytical chemistry.

[149]  A. Aspuru-Guzik,et al.  Self-driving laboratory for accelerated discovery of thin-film materials , 2019, Science Advances.

[150]  R. Lerner,et al.  Encoded combinatorial chemistry. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[151]  Klaus Gubernator,et al.  Optimization of the Biological Activity of Combinatorial Compound Libraries by a Genetic Algorithm , 1995 .

[152]  Mark Peplow,et al.  Organic synthesis: The robo-chemist , 2014, Nature.

[153]  Esben J. Bjerrum,et al.  Machine learning optimization of cross docking accuracy , 2016, Comput. Biol. Chem..

[154]  David E. Clark,et al.  Evolutionary algorithms in computer-aided molecular design , 1996, J. Comput. Aided Mol. Des..

[155]  L. Hammett The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives , 1937 .

[156]  Christine L. Andrews,et al.  Nanoscale synthesis and affinity ranking , 2018, Nature.

[157]  Derek T. Ahneman,et al.  Predicting reaction performance in C–N cross-coupling using machine learning , 2018, Science.

[158]  Piotr Dittwald,et al.  Discovery and Enumeration of Organic-Chemical and Biomimetic Reaction Cycles within the Network of Chemistry. , 2018, Angewandte Chemie.

[159]  Joshua Schrier,et al.  Understanding structural adaptability: a reactant informatics approach to experiment design , 2018 .

[160]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[161]  Bruce G. Buchanan,et al.  Heuristic DENDRAL - A program for generating explanatory hypotheses in organic chemistry. , 1968 .

[162]  M. Scheffler,et al.  Insightful classification of crystal structures using deep learning , 2017, Nature Communications.

[163]  A. Verloop,et al.  THE STERIMOL APPROACH: FURTHER DEVELOPMENT OF THE METHOD AND NEW APPLICATIONS , 1983 .

[164]  Sebastian Böcker,et al.  Bayesian networks for mass spectrometric metabolite identification via molecular fingerprints , 2018, Bioinform..

[165]  Johannes T. Margraf,et al.  Systematic Enumeration of Elementary Reaction Steps in Surface Catalysis , 2019, ACS omega.

[166]  Anatoly G Artemenko,et al.  Interpretation of QSAR Models Based on Random Forest Methods , 2011, Molecular informatics.

[167]  Tomasz Arodz,et al.  Computational methods in developing quantitative structure-activity relationships (QSAR): a review. , 2006, Combinatorial chemistry & high throughput screening.

[168]  Jeffrey Y. Pan,et al.  An Integrated Synthesis-Purification System to Accelerate the Generation of Compounds in Pharmaceutical Discovery , 2011 .

[169]  Markus Hartenfeller,et al.  DOGS: Reaction-Driven de novo Design of Bioactive Compounds , 2012, PLoS Comput. Biol..

[170]  Benjamin M. Gyori,et al.  From word models to executable models of signaling networks using automated assembly , 2017, bioRxiv.

[171]  Paul Richardson,et al.  A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow , 2018, Science.

[172]  Jingfa Li,et al.  Data mining new energy materials from structure databases , 2019, Renewable and Sustainable Energy Reviews.

[173]  Alexander G. Godfrey,et al.  A remote-controlled adaptive medchem lab: an innovative approach to enable drug discovery in the 21st Century. , 2013, Drug discovery today.

[174]  Piotr Dittwald,et al.  Efficient Syntheses of Diverse, Medicinally Relevant Targets Planned by Computer and Executed in the Laboratory , 2018 .

[175]  Petra Schneider,et al.  Von komplexen Naturstoffen zu synthetisch leicht zugänglichen Mimetika mithilfe von computergestütztem De‐novo‐Design , 2016 .

[176]  Constantine Bekas,et al.  “Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models† †Electronic supplementary information (ESI) available: Time-split test set and example predictions, together with attention weights, confidence and token probabilities. See DO , 2017, Chemical science.

[177]  Raúl E. Valdés-Pérez,et al.  Conjecturing Hidden Entities by Means of Simplicity and Conservation Laws: Machine Discovery in Chemistry , 1994, Artif. Intell..

[178]  Dean J Tantillo,et al.  The many roles of quantum chemical predictions in synthetic organic chemistry. , 2014, Chemistry, an Asian journal.

[179]  Adrian E. Roitberg,et al.  Less is more: sampling chemical space with active learning , 2018, The Journal of chemical physics.

[180]  Petra Schneider,et al.  De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks , 2000, J. Comput. Aided Mol. Des..

[181]  J. I. Goldsmith,et al.  Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. , 2005, Journal of the American Chemical Society.

[182]  Esben Jannik Bjerrum,et al.  Molecular Generation with Recurrent Neural Networks (RNNs) , 2017, ArXiv.

[183]  Daniel W. Davies,et al.  Machine learning for molecular and materials science , 2018, Nature.

[184]  Jason D. Williams,et al.  Laboratory of the future: a modular flow platform with multiple integrated PAT tools for multistep reactions , 2019, Reaction Chemistry & Engineering.

[185]  P. Rinke,et al.  Data‐Driven Materials Science: Status, Challenges, and Perspectives , 2019, Advanced science.

[186]  Klavs F. Jensen,et al.  Suzuki–Miyaura cross-coupling optimization enabled by automated feedback , 2016, Reaction chemistry & engineering.

[187]  Scott E. Denmark,et al.  Catalytic enantioselective cyclopropanation with bis(halomethyl)zinc reagents. I. Optimization of reaction protocol , 1995 .

[188]  J. Nørskov,et al.  Combined electronic structure and evolutionary search approach to materials design. , 2002, Physical review letters.

[189]  Derek T. Ahneman,et al.  Deoxyfluorination with Sulfonyl Fluorides: Navigating Reaction Space with Machine Learning. , 2018, Journal of the American Chemical Society.

[190]  Hans-Werner Schmidt,et al.  Detection of Catalytic Activity in Combinatorial Libraries of Heterogeneous Catalysts by IR Thermography. , 1998, Angewandte Chemie.

[191]  Sepp Hochreiter,et al.  Fréchet ChemNet Distance: A Metric for Generative Models for Molecules in Drug Discovery , 2018, J. Chem. Inf. Model..

[192]  D. Weitz,et al.  Droplet microfluidics for high-throughput biological assays. , 2012, Lab on a chip.

[193]  Alán Aspuru-Guzik,et al.  Neural Networks for the Prediction of Organic Chemistry Reactions , 2016, ACS central science.

[194]  Martin D. Burke,et al.  Synthesis of many different types of organic small molecules using one automated process , 2015, Science.

[195]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[196]  Nathan Brown,et al.  MOARF, an Integrated Workflow for Multiobjective Optimization: Implementation, Synthesis, and Biological Evaluation , 2015, J. Chem. Inf. Model..

[197]  Klavs F Jensen,et al.  Integrated microreactors for reaction automation: new approaches to reaction development. , 2010, Annual review of analytical chemistry.

[198]  Scott Habershon,et al.  Automatic Proposal of Multistep Reaction Mechanisms using a Graph-Driven Search. , 2019, The journal of physical chemistry. A.

[199]  Andrew C. Good,et al.  An Empirical Process for the Design of High-Throughput Screening Deck Filters , 2006, J. Chem. Inf. Model..

[200]  Gerbrand Ceder,et al.  Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm. , 2018, The Journal of chemical physics.

[201]  F. Glorius,et al.  Durch sichtbares Licht vermittelte Funktionalisierungen von Benzotriazolen, inspiriert durch mechanismusbasiertes Lumineszenz‐ Screening , 2017 .

[202]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[203]  Robert P. Sheridan,et al.  Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..

[204]  Frank Glorius,et al.  Contemporary screening approaches to reaction discovery and development. , 2014, Nature chemistry.

[205]  Abhinav Vishnu,et al.  Deep learning for computational chemistry , 2017, J. Comput. Chem..

[206]  Ryosuke Jinnouchi,et al.  Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm. , 2017, The journal of physical chemistry letters.

[207]  Gisbert Schneider,et al.  De Novo Design of Bioactive Small Molecules by Artificial Intelligence , 2018, Molecular informatics.

[208]  Connor W. Coley,et al.  Machine Learning in Computer-Aided Synthesis Planning. , 2018, Accounts of chemical research.

[209]  Sanjeev Garg,et al.  Multiobjective optimization of a free radical bulk polymerization reactor using genetic algorithm , 1999 .

[210]  Ken E. Whelan,et al.  The Automation of Science , 2009, Science.

[211]  D. Horvath,et al.  Predictive Models for Kinetic Parameters of Cycloaddition Reactions , 2018, Molecular informatics.

[212]  Pierre Baldi,et al.  ReactionPredictor: Prediction of Complex Chemical Reactions at the Mechanistic Level Using Machine Learning , 2012, J. Chem. Inf. Model..

[213]  J. Baell,et al.  New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. , 2010, Journal of medicinal chemistry.

[214]  Fengqi You,et al.  In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm , 2016, Science Advances.

[215]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[216]  D. Klahr,et al.  Heuristics for Scientific Experimentation: A Developmental Study , 1993, Cognitive Psychology.

[217]  Floris P. J. T. Rutjes,et al.  Optimizing the Deprotection of the Amine Protecting p-Methoxyphenyl Group in an Automated Microreactor Platform , 2009 .

[218]  Yang Liu,et al.  Route Designer: A Retrosynthetic Analysis Tool Utilizing Automated Retrosynthetic Rule Generation , 2009, J. Chem. Inf. Model..

[219]  John S. Schreck,et al.  Learning Retrosynthetic Planning through Simulated Experience , 2019, ACS central science.

[220]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[221]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[222]  Jerome G. P. Wicker,et al.  Will it crystallise? Predicting crystallinity of molecular materials , 2015 .

[223]  Bentley M Wingert,et al.  Improving small molecule virtual screening strategies for the next generation of therapeutics. , 2018, Current opinion in chemical biology.

[224]  Alán Aspuru-Guzik,et al.  Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project , 2014 .

[225]  Zeng Zeng,et al.  Graph Convolutional Neural Networks for Polymers Property Prediction , 2018, ArXiv.

[226]  Bilge Baytekin,et al.  Estimating chemical reactivity and cross-influence from collective chemical knowledge , 2012 .

[227]  Alexandre Varnek,et al.  Automatized Assessment of Protective Group Reactivity: A Step Toward Big Reaction Data Analysis , 2016, J. Chem. Inf. Model..

[228]  James A. Platts,et al.  Estimation of Molecular Linear Free Energy Relation Descriptors Using a Group Contribution Approach , 1999, J. Chem. Inf. Comput. Sci..

[229]  Jun Li,et al.  Making Better Decisions During Synthetic Route Design: Leveraging Prediction to Achieve Greenness-by-Design , 2019, Reaction Chemistry & Engineering.

[230]  Ryo Shimizu,et al.  Virtual Screening System for Finding Structurally Diverse Hits by Active Learning , 2008, J. Chem. Inf. Model..

[231]  Richard J Ingham,et al.  Organic synthesis: march of the machines. , 2015, Angewandte Chemie.

[232]  João Aires-de-Sousa,et al.  Prediction of 1H NMR Coupling Constants with Associative Neural Networks Trained for Chemical Shifts , 2007, J. Chem. Inf. Model..

[233]  Guido Koch,et al.  A segmented flow platform for on-demand medicinal chemistry and compound synthesis in oscillating droplets. , 2017, Chemical communications.

[234]  Matthew H Todd,et al.  Computer-aided organic synthesis. , 2005, Chemical Society reviews.

[235]  Carlos Mateos,et al.  Automated platforms for reaction self-optimization in flow , 2019, Reaction Chemistry & Engineering.

[236]  J. Kazius,et al.  Derivation and validation of toxicophores for mutagenicity prediction. , 2005, Journal of medicinal chemistry.

[237]  Dragos Horvath,et al.  CovaDOTS: In Silico Chemistry-Driven Tool to Design Covalent Inhibitors Using a Linking Strategy , 2019, J. Chem. Inf. Model..

[238]  Alán Aspuru-Guzik,et al.  ChemOS: Orchestrating autonomous experimentation , 2018, Science Robotics.

[239]  Heather J Kulik,et al.  Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network. , 2018, The journal of physical chemistry letters.

[240]  P. Bork,et al.  Literature mining for the biologist: from information retrieval to biological discovery , 2006, Nature Reviews Genetics.

[241]  Sebastian Böcker,et al.  Mining molecular structure databases: Identification of small molecules based on fragmentation mass spectrometry data. , 2017, Mass spectrometry reviews.

[242]  G Oskarsdottir,et al.  Parallel analysis of the reaction products from combinatorial catalyst libraries. , 2001, Angewandte Chemie.

[243]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[244]  Tudor I. Oprea,et al.  Chemography: the Art of Navigating in Chemical Space , 2000 .

[245]  Gisbert Schneider,et al.  Active-learning strategies in computer-assisted drug discovery. , 2015, Drug discovery today.

[246]  Demis Hassabis,et al.  A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play , 2018, Science.

[247]  Hao Wu,et al.  VAMPnets for deep learning of molecular kinetics , 2017, Nature Communications.

[248]  Atsuto Seko,et al.  Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids , 2013, 1310.1546.

[249]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[250]  Randall Q. Snurr,et al.  High-Throughput Screening of Porous Crystalline Materials for Hydrogen Storage Capacity near Room Temperature , 2014 .

[251]  J. Hartwig,et al.  Snap deconvolution: An informatics approach to high-throughput discovery of catalytic reactions , 2017, Science.

[252]  Jinlan Wang,et al.  Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning , 2018, Nature Communications.

[253]  Ji-Cheng Zhao Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships , 2006 .

[254]  Frank Glorius,et al.  Diverse Visible-Light-Promoted Functionalizations of Benzotriazoles Inspired by Mechanism-Based Luminescence Screening. , 2017, Angewandte Chemie.

[255]  C. Woodward,et al.  Accelerated exploration of multi-principal element alloys with solid solution phases , 2015, Nature Communications.

[256]  Yurii S. Moroz,et al.  Ultra-large library docking for discovering new chemotypes , 2019, Nature.

[257]  Baoguang Zhao,et al.  Design, synthesis and selection of DNA-encoded small-molecule libraries. , 2009, Nature chemical biology.

[258]  Geoffrey R Akien,et al.  Online quantitative mass spectrometry for the rapid adaptive optimisation of automated flow reactors , 2016 .

[259]  Igor I. Baskin,et al.  Machine Learning Methods for Property Prediction in Chemoinformatics: Quo Vadis? , 2012, J. Chem. Inf. Model..

[260]  J. Suykens,et al.  A tutorial on support vector machine-based methods for classification problems in chemometrics. , 2010, Analytica chimica acta.

[261]  T. Lookman,et al.  Accelerated Discovery of Large Electrostrains in BaTiO3‐Based Piezoelectrics Using Active Learning , 2018, Advanced materials.

[262]  Eugene N Muratov,et al.  Universal Approach for Structural Interpretation of QSAR/QSPR Models , 2013, Molecular informatics.

[263]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[264]  S. Schreiber,et al.  Target-oriented and diversity-oriented organic synthesis in drug discovery. , 2000, Science.

[265]  Wujie Wang,et al.  Coarse-graining auto-encoders for molecular dynamics , 2018, npj Computational Materials.

[266]  Paul M Zimmerman,et al.  Efficient exploration of reaction paths via a freezing string method. , 2011, The Journal of chemical physics.

[267]  Gisbert Schneider,et al.  Computer-based de novo design of drug-like molecules , 2005, Nature Reviews Drug Discovery.

[268]  Gisbert Schneider,et al.  Recurrent Neural Network Model for Constructive Peptide Design , 2018, J. Chem. Inf. Model..

[269]  Arthur W. Westerberg,et al.  DECADE—a hybrid expert system for catalyst selection—II. Final architecture and results , 1988 .

[270]  Ichiro Takeuchi,et al.  Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials , 2013 .

[271]  Charlotte Truchet,et al.  An autonomous self-optimizing flow machine for the synthesis of pyridine–oxazoline (PyOX) ligands , 2019, Reaction Chemistry & Engineering.

[272]  Bowen Liu,et al.  Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models , 2017, ACS central science.

[273]  Leroy Cronin,et al.  How to explore chemical space using algorithms and automation , 2019, Nature Reviews Chemistry.

[274]  Dmitry Vetrov,et al.  Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery. , 2018, Molecular pharmaceutics.

[275]  Magnus Rueping,et al.  Machine assisted reaction optimization: A self-optimizing reactor system for continuous-flow photochemical reactions , 2018, Tetrahedron.

[276]  Erin Antono,et al.  Building Data-driven Models with Microstructural Images: Generalization and Interpretability , 2017, ArXiv.

[277]  Shun Su,et al.  Discovery of chemical reactions through multidimensional screening. , 2007, Journal of the American Chemical Society.

[278]  Christopher K Prier,et al.  Discovery of an α-Amino C–H Arylation Reaction Using the Strategy of Accelerated Serendipity , 2011, Science.

[279]  B. Grzybowski,et al.  Rewiring chemistry: algorithmic discovery and experimental validation of one-pot reactions in the network of organic chemistry. , 2012, Angewandte Chemie.

[280]  Wei Zheng,et al.  A Cell-Based Ultra-High-Throughput Screening Assay for Identifying Inhibitors of D-Amino Acid Oxidase , 2006, Journal of biomolecular screening.

[281]  Peter Willett,et al.  Similarity-based virtual screening using 2D fingerprints. , 2006, Drug discovery today.

[282]  Maria Liakata,et al.  Towards Robot Scientists for autonomous scientific discovery , 2010, Automated experimentation.

[283]  Haijun Jiao,et al.  Mechanism of Graphene Formation via Detonation Synthesis: A DFTB Nanoreactor Approach. , 2019, Journal of chemical theory and computation.

[284]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[285]  Peter G. Schultz,et al.  A Combinatorial Approach to Materials Discovery , 1995, Science.

[286]  D. Goodsell,et al.  Automated docking of substrates to proteins by simulated annealing , 1990, Proteins.

[287]  Russ Greiner,et al.  Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification , 2013, Metabolomics.

[288]  Thomas F. Miller,et al.  A Universal Density Matrix Functional from Molecular Orbital-Based Machine Learning: Transferability across Organic Molecules , 2019, The Journal of chemical physics.

[289]  William P Flanagan,et al.  Development of combinatorial chemistry methods for coatings: high-throughput adhesion evaluation and scale-up of combinatorial leads. , 2003, Journal of combinatorial chemistry.

[290]  C. Reichardt Solvents and Solvent Effects in Organic Chemistry , 1988 .

[291]  Svetha Venkatesh,et al.  Hybrid Generative-Discriminative Models for Inverse Materials Design , 2018, ArXiv.

[292]  Gisbert Schneider,et al.  Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis , 2019, Nature Machine Intelligence.

[293]  Artur M. Schweidtmann,et al.  Machine learning meets continuous flow chemistry: Automated optimization towards the Pareto front of multiple objectives , 2018, Chemical Engineering Journal.

[294]  Petra Mutzel,et al.  CHIPMUNK: A Virtual Synthesizable Small‐Molecule Library for Medicinal Chemistry, Exploitable for Protein–Protein Interaction Modulators , 2018, ChemMedChem.

[295]  Johann Gasteiger,et al.  A Graph-Based Genetic Algorithm and Its Application to the Multiobjective Evolution of Median Molecules , 2004, J. Chem. Inf. Model..

[296]  Elizabeth Farrant,et al.  Rapid discovery of a novel series of Abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform. , 2013, Journal of medicinal chemistry.

[297]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[298]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[299]  Kamal Kumar,et al.  Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery. , 2016, Angewandte Chemie.

[300]  A. McCallum,et al.  Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning , 2017 .

[301]  Herbert A. Simon,et al.  Scientific discovery: compulalional explorations of the creative process , 1987 .

[302]  Herbert A. Simon,et al.  The Processes of Scientific Discovery: The Strategy of Experimentation , 1988, Cogn. Sci..

[303]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[304]  Stanley N. Deming,et al.  Automated instrumental system for fundamental characterization of chemical reactions , 1971 .

[305]  Selim M. Senkan,et al.  High-throughput screening of solid-state catalyst libraries , 1998, Nature.

[306]  Jonathan P. McMullen,et al.  Rapid Determination of Reaction Kinetics with an Automated Microfluidic System , 2011 .

[307]  Michael W. George,et al.  Real-Time Feedback Control Using Online Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy for Continuous Flow Optimization and Process Knowledge , 2013, Applied spectroscopy.

[308]  Deepak Bandyopadhyay,et al.  DNA-Encoded Library Screening Identifies Benzo[b][1,4]oxazepin-4-ones as Highly Potent and Monoselective Receptor Interacting Protein 1 Kinase Inhibitors. , 2016, Journal of medicinal chemistry.

[309]  Chris M Snively,et al.  Parallelanalyse der Reaktionsprodukte von Katalysatorbibliotheken , 2001 .

[310]  John G. Moffat,et al.  Phenotypic screening in cancer drug discovery — past, present and future , 2014, Nature Reviews Drug Discovery.

[311]  Luke E K Achenie,et al.  High-throughput screening of bimetallic catalysts enabled by machine learning , 2017 .

[312]  Orr Ravitz,et al.  Data-driven computer aided synthesis design. , 2013, Drug discovery today. Technologies.

[313]  R. Cooks,et al.  Ambient Mass Spectrometry , 2006, Science.

[314]  Andrew L. Ferguson,et al.  Machine learning for autonomous crystal structure identification. , 2017, Soft matter.

[315]  Gianni De Fabritiis,et al.  KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks , 2018, J. Chem. Inf. Model..

[316]  Thomas Blaschke,et al.  Molecular de-novo design through deep reinforcement learning , 2017, Journal of Cheminformatics.

[317]  Jun Xu,et al.  Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks , 2019, J. Chem. Inf. Model..

[318]  D. Swanson Migraine and Magnesium: Eleven Neglected Connections , 2015, Perspectives in biology and medicine.

[319]  Ruslan Salakhutdinov,et al.  Learning Deep Generative Models , 2009 .

[320]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[321]  L Mark Hall,et al.  Evaluation of an Artificial Neural Network Retention Index Model for Chemical Structure Identification in Nontargeted Metabolomics. , 2018, Analytical chemistry.

[322]  Randall Q. Snurr,et al.  Identifying promising metal–organic frameworks for heterogeneous catalysis via high‐throughput periodic density functional theory , 2019, J. Comput. Chem..

[323]  Taylor D. Sparks,et al.  High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds , 2016 .

[324]  Ji-Bo Wang,et al.  The Proximal Lilly Collection: Mapping, Exploring and Exploiting Feasible Chemical Space , 2016, J. Chem. Inf. Model..

[325]  P. Clemons,et al.  Target identification and mechanism of action in chemical biology and drug discovery. , 2013, Nature chemical biology.

[326]  Jun S. Liu,et al.  Integrated Bio-Entity Network: A System for Biological Knowledge Discovery , 2011, PloS one.

[327]  Ramón García-Domenech,et al.  Application of molecular topology for the prediction of the reaction times and yields under solvent-free conditions , 2010 .

[328]  Piotr Dittwald,et al.  Computergestützte Syntheseplanung: Das Ende vom Anfang , 2016 .

[329]  Amedeo Caflisch,et al.  Fragment-Based de Novo Ligand Design by Multiobjective Evolutionary Optimization , 2008, J. Chem. Inf. Model..

[330]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[331]  W Frank An,et al.  Cell-Based Assays for High-Throughput Screening , 2010, Molecular biotechnology.

[332]  J. Gregoire,et al.  Machine Learning of Optical Properties of Materials - Predicting Spectra from Images and Images from Spectra , 2018 .

[333]  Klaus-Robert Müller,et al.  Finding Density Functionals with Machine Learning , 2011, Physical review letters.

[334]  David R. Liu,et al.  Methods for the directed evolution of proteins , 2015, Nature Reviews Genetics.

[335]  Jeffrey Y. Pan,et al.  Engineering Chemistry Innovation. , 2019, ACS medicinal chemistry letters.

[336]  W. L. Jorgensen,et al.  Computer-assisted mechanistic evaluation of organic reactions. 1. Overview , 1980 .

[337]  Kimito Funatsu,et al.  SOPHIA, a Knowledge Base-Guided Reaction Prediction System - Utilization of a Knowledge Base Derived from a Reaction Database , 1995, J. Chem. Inf. Comput. Sci..

[338]  Stephani Joy Y Macalino,et al.  Role of computer-aided drug design in modern drug discovery , 2015, Archives of Pharmacal Research.

[339]  J. Hendler,et al.  Amplify scientific discovery with artificial intelligence , 2014, Science.

[340]  Santosh Putta,et al.  Machine-learning models for combinatorial catalyst discovery , 2003 .

[341]  Frank R Burden,et al.  Quantitative structure-property relationship modeling of diverse materials properties. , 2012, Chemical reviews.

[342]  Dara Khairunnisa Binte Mohamed,et al.  Reaction screening in continuous flow reactors , 2016 .

[343]  John R. Proudfoot,et al.  Molecular Complexity and Retrosynthesis. , 2017, The Journal of organic chemistry.

[344]  Wendy A Warr,et al.  A Short Review of Chemical Reaction Database Systems, Computer‐Aided Synthesis Design, Reaction Prediction and Synthetic Feasibility , 2014, Molecular informatics.

[345]  Robert P. Sheridan,et al.  Modeling a Crowdsourced Definition of Molecular Complexity , 2014, J. Chem. Inf. Model..

[346]  Ove Christiansen,et al.  Machine learning for potential energy surfaces: An extensive database and assessment of methods. , 2019, The Journal of chemical physics.

[347]  Christopher H. Bryant,et al.  Functional genomic hypothesis generation and experimentation by a robot scientist , 2004, Nature.

[348]  Ross D. King,et al.  Automating Sciences: Philosophical and Social Dimensions , 2018, IEEE Technology and Society Magazine.

[349]  Irwin D. Kuntz,et al.  A genetic algorithm for structure-based de novo design , 2001, J. Comput. Aided Mol. Des..

[350]  Gunnar Rätsch,et al.  Active Learning with Support Vector Machines in the Drug Discovery Process , 2003, J. Chem. Inf. Comput. Sci..

[351]  Fabian J Theis,et al.  Deep learning: new computational modelling techniques for genomics , 2019, Nature Reviews Genetics.

[352]  Atsuto Seko,et al.  Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization. , 2015, Physical review letters.

[353]  Markus Reiher,et al.  The Exploration of Chemical Reaction Networks. , 2019, Annual review of physical chemistry.

[354]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[355]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[356]  Alexandre Varnek,et al.  Structure–reactivity modeling using mixture-based representation of chemical reactions , 2017, Journal of Computer-Aided Molecular Design.

[357]  Noel M. O'Boyle,et al.  Computational Design and Selection of Optimal Organic Photovoltaic Materials , 2011 .

[358]  Alexei Lapkin,et al.  Self-optimisation and model-based design of experiments for developing a C–H activation flow process , 2017, Beilstein journal of organic chemistry.

[359]  Igor I. Baskin,et al.  Structure–reactivity relationship in Diels–Alder reactions obtained using the condensed reaction graph approach , 2017, Journal of Structural Chemistry.

[360]  Robert F Murphy,et al.  An active role for machine learning in drug development. , 2011, Nature chemical biology.

[361]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[362]  Alok Choudhary,et al.  Combinatorial screening for new materials in unconstrained composition space with machine learning , 2014 .

[363]  Steven V. Ley,et al.  Organische Synthese: Vormarsch der Maschinen , 2015 .

[364]  Klavs F Jensen,et al.  Reconfigurable system for automated optimization of diverse chemical reactions , 2018, Science.

[365]  Florent Chevillard,et al.  Virtual Compound Libraries in Computer-Assisted Drug Discovery , 2019, J. Chem. Inf. Model..

[366]  Mar Michael Meier,et al.  Combinatorial polymer research and high-throughput experimentation: powerful tools for the discovery and evaluation of new materials , 2004 .

[367]  Leroy Cronin,et al.  An autonomous organic reaction search engine for chemical reactivity , 2017, Nature Communications.

[368]  Ryan L Hartman,et al.  Microchemical systems for continuous-flow synthesis. , 2009, Lab on a chip.

[369]  William H. Green,et al.  Predictive Kinetics: A New Approach for the 21st Century , 2010 .

[370]  Gisbert Schneider,et al.  Automating drug discovery , 2017, Nature Reviews Drug Discovery.

[371]  J Willem M Nissink,et al.  Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017—Utility and Limitations , 2017, ACS chemical biology.

[372]  Mike Preuss,et al.  Planning chemical syntheses with deep neural networks and symbolic AI , 2017, Nature.

[373]  John F. Hartwig,et al.  A Fluorescence-Based Assay for High-Throughput Screening of Coupling Reactions. Application to Heck Chemistry , 1999 .

[374]  H. M. Vinkers,et al.  SYNOPSIS: SYNthesize and OPtimize System in Silico. , 2003, Journal of medicinal chemistry.

[375]  M. Terrones,et al.  Discovery of wall-selective carbon nanotube growth conditions via automated experimentation. , 2014, ACS nano.

[376]  Jonathan A. Ellman,et al.  Synthesis and Applications of Small Molecule Libraries. , 1996, Chemical reviews.

[377]  Igor V. Tetko,et al.  ToxAlerts: A Web Server of Structural Alerts for Toxic Chemicals and Compounds with Potential Adverse Reactions , 2012, J. Chem. Inf. Model..

[378]  Leroy Cronin,et al.  Towards dial-a-molecule by integrating continuous flow, analytics and self-optimisation. , 2016, Chemical Society reviews.

[379]  Per-Ola Norrby,et al.  Steric Influences on the Selectivity in Palladium-Catalyzed Allylation , 1997 .

[380]  Andrew P. Bradley,et al.  Rule extraction from support vector machines: A review , 2010, Neurocomputing.

[381]  P. Manju,et al.  Fast machine-learning online optimization of ultra-cold-atom experiments , 2015, Scientific Reports.

[382]  Evgeny Putin,et al.  Adversarial Threshold Neural Computer for Molecular de Novo Design. , 2018, Molecular pharmaceutics.

[383]  Timon Schroeter,et al.  Visual Interpretation of Kernel‐Based Prediction Models , 2011, Molecular informatics.

[384]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[385]  Stefano Curtarolo,et al.  Uncovering compounds by synergy of cluster expansion and high-throughput methods. , 2010, Journal of the American Chemical Society.

[386]  Bin Yang,et al.  Modeling study of the anti-knock tendency of substituted phenols as additives: an application of the reaction mechanism generator (RMG). , 2018, Physical chemistry chemical physics : PCCP.

[387]  Jörg Rech,et al.  Knowledge Discovery in Databases , 2001, Künstliche Intell..

[388]  Peter Ertl,et al.  Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions , 2009, J. Cheminformatics.

[389]  Karin M. Verspoor,et al.  Improving Chemical Named Entity Recognition in Patents with Contextualized Word Embeddings , 2019, BioNLP@ACL.

[390]  Piotr Dittwald,et al.  Computer-Assisted Synthetic Planning: The End of the Beginning. , 2016, Angewandte Chemie.

[391]  Michael G. Hutchings,et al.  Route Design in the 21st Century: The ICSYNTH Software Tool as an Idea Generator for Synthesis Prediction , 2015 .

[392]  D. W. Noid,et al.  On the Design, Analysis, and Characterization of Materials Using Computational Neural Networks , 1996 .

[393]  M. Bezerra,et al.  Response surface methodology (RSM) as a tool for optimization in analytical chemistry. , 2008, Talanta.

[394]  V. Batista,et al.  Search for Catalysts by Inverse Design: Artificial Intelligence, Mountain Climbers, and Alchemists. , 2019, Chemical reviews.

[395]  Polina Golland,et al.  Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning , 2009, Proceedings of the National Academy of Sciences.

[396]  Satoshi Maeda,et al.  On Benchmarking of Automated Methods for Performing Exhaustive Reaction Path Search. , 2019, Journal of chemical theory and computation.

[397]  C. Dobson Chemical space and biology , 2004, Nature.

[398]  W. P. Walters,et al.  Virtual Chemical Libraries. , 2018, Journal of medicinal chemistry.

[399]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[400]  Thomas Blaschke,et al.  The rise of deep learning in drug discovery. , 2018, Drug discovery today.

[401]  Jiali Li,et al.  Deep Learning Accelerated Gold Nanocluster Synthesis , 2018, Adv. Intell. Syst..

[402]  Zachary W. Ulissi,et al.  Automated Discovery and Construction of Surface Phase Diagrams Using Machine Learning. , 2016, The journal of physical chemistry letters.

[403]  Aleksey Buzmakov,et al.  Discovering Structural Alerts for Mutagenicity Using Stable Emerging Molecular Patterns , 2015, J. Chem. Inf. Model..

[404]  David Klahr,et al.  Dual Space Search During Scientific Reasoning , 1988, Cogn. Sci..

[405]  Rahul Rao,et al.  Autonomy in materials research: a case study in carbon nanotube growth , 2016 .

[406]  Pavel Polishchuk,et al.  Interpretation of Quantitative Structure-Activity Relationship Models: Past, Present, and Future , 2017, J. Chem. Inf. Model..

[407]  M. Rubens,et al.  Precise Polymer Synthesis by Autonomous Self-Optimizing Flow Reactors. , 2019, Angewandte Chemie.

[408]  John Bradshaw,et al.  Predicting Electron Paths , 2018, ArXiv.

[409]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[410]  Olexandr Isayev,et al.  Deep reinforcement learning for de novo drug design , 2017, Science Advances.

[411]  Peter Willett,et al.  Designing focused libraries using MoSELECT. , 2002, Journal of molecular graphics & modelling.

[412]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[413]  Pierre Baldi,et al.  Learning to Predict Chemical Reactions , 2011, J. Chem. Inf. Model..

[414]  Alán Aspuru-Guzik,et al.  What Is High-Throughput Virtual Screening? A Perspective from Organic Materials Discovery , 2015 .

[415]  Andreas Schwienhorst,et al.  Genetic algorithm for the design of molecules with desired properties , 2002, J. Comput. Aided Mol. Des..

[416]  J. Bajorath,et al.  State-of-the-art in ligand-based virtual screening. , 2011, Drug discovery today.

[417]  Hongfeng Deng,et al.  Discovery of highly potent and selective small molecule ADAMTS-5 inhibitors that inhibit human cartilage degradation via encoded library technology (ELT). , 2012, Journal of medicinal chemistry.

[418]  William H. Green,et al.  Computer-Assisted Retrosynthesis Based on Molecular Similarity , 2017, ACS central science.

[419]  Nathan Brown,et al.  Multi-objective optimization methods in drug design. , 2013, Drug discovery today. Technologies.

[420]  Connor W. Coley,et al.  A graph-convolutional neural network model for the prediction of chemical reactivity , 2018, Chemical science.

[421]  Pedro J. Ballester,et al.  Performance of machine-learning scoring functions in structure-based virtual screening , 2017, Scientific Reports.

[422]  Alexander V. Shapeev,et al.  Active learning of linearly parametrized interatomic potentials , 2016, 1611.09346.

[423]  S. Free,et al.  A MATHEMATICAL CONTRIBUTION TO STRUCTURE-ACTIVITY STUDIES. , 1964, Journal of medicinal chemistry.

[424]  E Weinan,et al.  Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics , 2017, Physical review letters.

[425]  Christoph E. Dumelin,et al.  Encoded Library Synthesis Using Chemical Ligation and the Discovery of sEH Inhibitors from a 334-Million Member Library , 2015, Scientific Reports.

[426]  Ribana Roscher,et al.  Explainable Machine Learning for Scientific Insights and Discoveries , 2019, IEEE Access.

[427]  Raúl E. Valdés-Pérez,et al.  Human/computer interactive elucidation of reaction mechanisms: application to catalyzed hydrogenolysis of ethane , 1994 .

[428]  Brandon J. Reizman,et al.  An Automated Continuous-Flow Platform for the Estimation of Multistep Reaction Kinetics , 2012 .

[429]  A A Lapkin,et al.  Automation of route identification and optimisation based on data-mining and chemical intuition. , 2017, Faraday discussions.

[430]  Bruce G. Buchanan,et al.  On generality and problem solving: a case study using the DENDRAL program , 1970 .

[431]  Ian Hughes,et al.  Automated Lead Optimization of MMP-12 Inhibitors Using a Genetic Algorithm. , 2011, ACS medicinal chemistry letters.

[432]  P Schneider,et al.  Multi-objective active machine learning rapidly improves structure–activity models and reveals new protein–protein interaction inhibitors† †Electronic supplementary information (ESI) available: Details about computational comparisons and all screening results. See DOI: 10.1039/c5sc04272k , 2016, Chemical science.

[433]  Vasant Honavar,et al.  The Promise and Potential of Big Data: A Case for Discovery Informatics , 2014 .

[434]  Krishna Rajan,et al.  Materials Informatics: The Materials ``Gene'' and Big Data , 2015 .

[435]  Qionghua Zhou,et al.  Rapid Discovery of Ferroelectric Photovoltaic Perovskites and Material Descriptors via Machine Learning , 2019, Small Methods.

[436]  Jan M. Zytkow,et al.  Data-Driven Approaches to Empirical Discovery , 1989, Artif. Intell..

[437]  Alexandre Tkatchenko,et al.  Quantum-chemical insights from deep tensor neural networks , 2016, Nature Communications.

[438]  D. Horvath,et al.  Integrated Strategy for Lead Optimization Based on Fragment Growing: The Diversity-Oriented-Target-Focused-Synthesis Approach. , 2018, Journal of medicinal chemistry.

[439]  Jonathan Grizou,et al.  Human versus Robots in the Discovery and Crystallization of Gigantic Polyoxometalates , 2017, Angewandte Chemie.

[440]  J. Behler First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems. , 2017, Angewandte Chemie.

[441]  H. M. Geysen,et al.  Isotope or mass encoding of combinatorial libraries. , 1996, Chemistry & biology.

[442]  Mark Moll,et al.  A review of parameters and heuristics for guiding metabolic pathfinding , 2017, Journal of Cheminformatics.

[443]  Bo Yu,et al.  Size estimation of chemical space: how big is it? , 2012, The Journal of pharmacy and pharmacology.

[444]  Leroy Cronin,et al.  Organic synthesis in a modular robotic system driven by a chemical programming language , 2019, Science.

[445]  Michael W. George,et al.  Automated Serendipity with Self-Optimizing Continuous-Flow Reactors , 2015 .

[446]  Thierry Kogej,et al.  Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks , 2017, ACS central science.

[447]  F. Dean Toste,et al.  A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis , 2015, Science.

[448]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[449]  Louis-Charles Campeau,et al.  Nickel-Catalyzed Asymmetric Alkene Hydrogenation of α,β-Unsaturated Esters: High-Throughput Experimentation-Enabled Reaction Discovery, Optimization, and Mechanistic Elucidation. , 2016, Journal of the American Chemical Society.

[450]  Bowen Li,et al.  Designing compact training sets for data-driven molecular property prediction through optimal exploitation and exploration , 2019, Molecular Systems Design & Engineering.

[451]  W. Patrick Walters,et al.  A guide to drug discovery: Designing screens: how to make your hits a hit , 2003, Nature Reviews Drug Discovery.

[452]  Brian L. DeCost,et al.  Accelerated Development of Perovskite-Inspired Materials via High-Throughput Synthesis and Machine-Learning Diagnosis , 2018, Joule.

[453]  Aleksandra Baranczak,et al.  Integrated Platform for Expedited Synthesis-Purification-Testing of Small Molecule Libraries. , 2017, ACS medicinal chemistry letters.

[454]  Jan M. Zytkow,et al.  Combining many searches in the FAHRENHEIT discovery system , 1987 .

[455]  Bruce G Buchanan,et al.  Automating Science , 2009, Science.

[456]  Richard Hansen,et al.  National Instruments LabVIEW: A Programming Environment for Laboratory Automation and Measurement , 2007 .

[457]  Bin Li,et al.  Applications of machine learning in drug discovery and development , 2019, Nature Reviews Drug Discovery.

[458]  Linda J. Broadbelt,et al.  Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates , 1994 .

[459]  Claudio Battilocchio,et al.  A Novel Internet-Based Reaction Monitoring, Control and Autonomous Self-Optimization Platform for Chemical Synthesis , 2015 .

[460]  Oliver Throl,et al.  High-throughput screening: speeding up porous materials discovery. , 2011, Chemical communications.

[461]  Jean-Marie Lehn,et al.  Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries , 1999 .

[462]  J. Panteleev,et al.  Recent applications of machine learning in medicinal chemistry. , 2018, Bioorganic & medicinal chemistry letters.

[463]  Anthony Wood,et al.  Organic synthesis provides opportunities to transform drug discovery , 2018, Nature Chemistry.

[464]  Connie M. Borror,et al.  Response surface design evaluation and comparison , 2009 .

[465]  Markus Reiher,et al.  Exploration of Reaction Pathways and Chemical Transformation Networks. , 2018, The journal of physical chemistry. A.

[466]  P. Anderson,et al.  Machines fall short of revolutionary science. , 2009, Science.

[467]  Feng Lin,et al.  Machine Learning Directed Search for Ultraincompressible, Superhard Materials. , 2018, Journal of the American Chemical Society.

[469]  Arnold Neumaier,et al.  SNOBFIT -- Stable Noisy Optimization by Branch and Fit , 2008, TOMS.

[470]  E J Corey,et al.  Computer-assisted design of complex organic syntheses. , 1969, Science.

[471]  Isik Onal,et al.  Hochdurchsatz-Screening von Heterogenkatalysator-Bibliotheken unter Verwendung eines Mehrkammerreaktorsystems und der Massenspektrometrie , 1999 .

[472]  Turab Lookman,et al.  Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design , 2019, npj Computational Materials.

[473]  Robert P. Sheridan,et al.  Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS , 2018, Science.

[474]  R. King,et al.  Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming. , 1996, Environmental health perspectives.

[475]  D. Sanderson,et al.  Computer Prediction of Possible Toxic Action from Chemical Structure; The DEREK System , 1991, Human & experimental toxicology.

[476]  Arun Mannodi-Kanakkithodi,et al.  Machine Learning Strategy for Accelerated Design of Polymer Dielectrics , 2016, Scientific Reports.

[477]  K. Popper,et al.  Conjectures and refutations;: The growth of scientific knowledge , 1972 .

[478]  Hans-Michael Müller,et al.  Textpresso: An Ontology-Based Information Retrieval and Extraction System for Biological Literature , 2004, PLoS biology.

[479]  Jonathan P. McMullen,et al.  An Automated Microfluidic System for Online Optimization in Chemical Synthesis , 2010 .

[480]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[481]  Raúl E. Valdés-Pérez,et al.  Machine Discovery in Chemistry: New Results , 1995, Artif. Intell..

[482]  Stuart L. Schreiber,et al.  High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria , 2016, ACS infectious diseases.

[483]  Masha Elkin,et al.  Computational chemistry strategies in natural product synthesis. , 2018, Chemical Society reviews.

[484]  Derek S. Tan,et al.  Diversity-oriented synthesis: exploring the intersections between chemistry and biology , 2005, Nature chemical biology.

[485]  David R Spring,et al.  Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. , 2010, Nature communications.

[486]  R. McGibbon,et al.  Discovering chemistry with an ab initio nanoreactor , 2014, Nature chemistry.

[487]  R. B. Sunoj,et al.  Machine learning for predicting product distributions in catalytic regioselective reactions. , 2018, Physical chemistry chemical physics : PCCP.

[488]  John B. O. Mitchell Machine learning methods in chemoinformatics , 2014, Wiley interdisciplinary reviews. Computational molecular science.

[489]  Martyn Poliakoff,et al.  Self-optimizing continuous reactions in supercritical carbon dioxide. , 2011, Angewandte Chemie.

[490]  Samu Melkko,et al.  DNA-encoded chemical libraries , 2022, Nature Reviews Methods Primers.

[491]  A. Valencia,et al.  Linking genes to literature: text mining, information extraction, and retrieval applications for biology , 2008, Genome Biology.

[492]  Jolene P Reid,et al.  Holistic Prediction of Enantioselectivity in Asymmetric Catalysis , 2019, Nature.

[493]  Venkat Venkatasubramanian,et al.  Catalyst design: knowledge extraction from high-throughput experimentation , 2003 .

[494]  Qi Wang,et al.  Discovery of neuroprotective compounds by machine learning approaches , 2016 .

[495]  Mohammed AlQuraishi End-to-end differentiable learning of protein structure , 2018, bioRxiv.

[496]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[497]  Floris P. J. T. Rutjes,et al.  Fast Scale-Up Using Microreactors: Pyrrole Synthesis from Micro to Production Scale , 2011 .

[498]  Eric S. Isbrandt,et al.  Hochdurchsatzstrategien zur Entdeckung und Optimierung katalytischer Reaktionen , 2019, Angewandte Chemie.

[499]  Zois Boukouvalas,et al.  Deep learning for molecular generation and optimization - a review of the state of the art , 2019, Molecular Systems Design & Engineering.

[500]  Robert T. McGibbon,et al.  Automated Discovery and Refinement of Reactive Molecular Dynamics Pathways. , 2016, Journal of chemical theory and computation.

[501]  Young-Chul Bae,et al.  Advanced Intelligent Systems , 2014, Advances in Intelligent Systems and Computing.

[502]  C. E. Peishoff,et al.  A critical assessment of docking programs and scoring functions. , 2006, Journal of medicinal chemistry.

[503]  Ashwin Srinivasan,et al.  Pharmacophore Discovery Using the Inductive Logic Programming System PROGOL , 1998, Machine Learning.

[504]  Krishna Rajan,et al.  Combinatorial and high-throughput screening of materials libraries: review of state of the art. , 2011, ACS combinatorial science.

[505]  Jonas Boström,et al.  Expanding the medicinal chemistry synthetic toolbox , 2018, Nature Reviews Drug Discovery.

[506]  H. K. D. H. Bhadeshia,et al.  Performance of neural networks in materials science , 2009 .

[507]  Klavs F Jensen,et al.  Feedback in Flow for Accelerated Reaction Development. , 2016, Accounts of chemical research.

[508]  Neil R. Smalheiser,et al.  Artificial Intelligence An interactive system for finding complementary literatures : a stimulus to scientific discovery , 1995 .

[509]  Petra Schneider,et al.  Generative Recurrent Networks for De Novo Drug Design , 2017, Molecular informatics.

[510]  Jason E. Kreutz,et al.  Evolution of catalysts directed by genetic algorithms in a plug-based microfluidic device tested with oxidation of methane by oxygen. , 2010, Journal of the American Chemical Society.

[511]  Garry P Nolan,et al.  Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling , 2006, Nature Methods.

[512]  I. Takeuchi,et al.  Role of high-throughput characterization tools in combinatorial materials science , 2004 .

[513]  J. An,et al.  Structure-based virtual screening of chemical libraries for drug discovery. , 2006, Current opinion in chemical biology.

[514]  Scott Boyer,et al.  Choosing Feature Selection and Learning Algorithms in QSAR , 2014, J. Chem. Inf. Model..

[515]  Maciej Haranczyk,et al.  Capturing chemical intuition in synthesis of metal-organic frameworks , 2019, Nature Communications.

[516]  Pat Langley The computational support of scientific discovery , 2000, Int. J. Hum. Comput. Stud..

[517]  Frank Noé,et al.  Machine Learning of Coarse-Grained Molecular Dynamics Force Fields , 2018, ACS central science.

[518]  Maria F. Sassano,et al.  Automated design of ligands to polypharmacological profiles , 2012, Nature.

[519]  Anthony F. Volpe,et al.  Gas phase oxidation of ethane to acetic acid using high-throughput screening in a massively parallel microfluidic reactor system , 2003 .

[520]  Geun Ho Gu,et al.  Machine learning for renewable energy materials , 2019, Journal of Materials Chemistry A.

[521]  Shikha Gupta,et al.  Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes , 2015, J. Chem. Inf. Model..

[522]  K. Roberts,et al.  Thesis , 2002 .

[523]  Robert F. Murphy,et al.  Efficient discovery of responses of proteins to compounds using active learning , 2013, BMC Bioinformatics.

[524]  H. Simon,et al.  Scientific discovery as problem solving , 1981, Synthese.

[525]  A. Valencia,et al.  Information Retrieval and Text Mining Technologies for Chemistry. , 2017, Chemical reviews.

[526]  Lawrence Hunter,et al.  Biomedical Discovery Acceleration, with Applications to Craniofacial Development , 2009, PLoS Comput. Biol..

[527]  Woo Youn Kim,et al.  Efficient prediction of reaction paths through molecular graph and reaction network analysis† †Electronic supplementary information (ESI) available: Detailed information on reaction networks and pathways for two example reactions, Cartesian coordinates of molecules in the reaction networks obtained , 2017, Chemical science.

[528]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[529]  Steven H. Bertz,et al.  The first general index of molecular complexity , 1981 .

[530]  Jared T. Shaw,et al.  Recent advances in multicomponent reactions for diversity-oriented synthesis. , 2010, Current opinion in chemical biology.

[531]  Adam Nelson,et al.  Streamlining bioactive molecular discovery through integration and automation , 2018, Nature Reviews Chemistry.

[532]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[533]  Elsa Olivetti,et al.  A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction , 2019, ACS central science.

[534]  W. Guida,et al.  The art and practice of structure‐based drug design: A molecular modeling perspective , 1996, Medicinal research reviews.

[535]  J. Tuszynski,et al.  Software for molecular docking: a review , 2017, Biophysical Reviews.

[536]  Paul M. Zimmerman,et al.  Automated discovery of chemically reasonable elementary reaction steps , 2013, J. Comput. Chem..

[537]  Alexandre Varnek,et al.  Structural and Physico-Chemical Interpretation (SPCI) of QSAR Models and Its Comparison with Matched Molecular Pair Analysis , 2016, J. Chem. Inf. Model..

[538]  Regina Barzilay,et al.  Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction , 2017, J. Chem. Inf. Model..

[539]  Alexei A. Lapkin,et al.  An Introduction to Closed-Loop Process Optimization and Online Analysis , 2019, Handbook of Green Chemistry.

[540]  Zachary W. Ulissi,et al.  To address surface reaction network complexity using scaling relations machine learning and DFT calculations , 2017, Nature Communications.

[541]  Russ B Altman,et al.  Machine learning in chemoinformatics and drug discovery. , 2018, Drug discovery today.

[542]  R. M. Muir,et al.  Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients , 1962, Nature.

[543]  Herbert A. Simon,et al.  Scientific discovery: compulalional explorations of the creative process , 1987 .

[544]  Charlotte Truchet,et al.  An Autonomous Self-Optimizing Flow Reactor for the Synthesis of Natural Product Carpanone. , 2018, The Journal of organic chemistry.

[545]  Alfonso Valencia,et al.  CHEMDNER: The drugs and chemical names extraction challenge , 2015, Journal of Cheminformatics.

[546]  Edward W. Lowe,et al.  Computational Methods in Drug Discovery , 2014, Pharmacological Reviews.

[547]  Michael Almstetter,et al.  Discovery of New Multi Component Reactions with Combinatorial Methods , 1999 .

[548]  Brian L Claus,et al.  Discovery informatics: its evolving role in drug discovery. , 2002, Drug discovery today.

[549]  Leroy Cronin,et al.  Controlling an organic synthesis robot with machine learning to search for new reactivity , 2018, Nature.

[550]  Jacqueline M. Cole,et al.  ChemDataExtractor: A Toolkit for Automated Extraction of Chemical Information from the Scientific Literature , 2016, J. Chem. Inf. Model..

[551]  Ioannis G. Kevrekidis,et al.  Data Mining for Parameters Affecting Polymorph Selection in Contorted Hexabenzocoronene Derivatives. , 2018, Chemistry of materials : a publication of the American Chemical Society.

[552]  Jan H Jensen A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space† †Electronic supplementary information (ESI) available: The codes used in this study can be found on GitHub: github.com/jensengroup/GB-GA/tree/v0.0 and github.com/jensengroup/GB-GM/tree , 2019, Chemical science.

[553]  Alán Aspuru-Guzik,et al.  Reinforced Adversarial Neural Computer for de Novo Molecular Design , 2018, J. Chem. Inf. Model..

[554]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[555]  Edward A. Feigenbaum,et al.  Computers & thought , 1995 .

[556]  Chartchalerm Isarankura-Na-Ayudhya,et al.  Prediction of GFP spectral properties using artificial neural network , 2007, J. Comput. Chem..

[557]  Pedro J Ballester,et al.  Prospective virtual screening with Ultrafast Shape Recognition: the identification of novel inhibitors of arylamine N-acetyltransferases , 2010, Journal of The Royal Society Interface.

[558]  J. Farris CONJECTURES AND REFUTATIONS , 1995, Cladistics : the international journal of the Willi Hennig Society.

[559]  Manfred T Reetz,et al.  A Method for High-Throughput Screening of Enantioselective Catalysts. , 1999, Angewandte Chemie.

[560]  Dominique Douguet,et al.  A genetic algorithm for the automated generation of small organic molecules: Drug design using an evolutionary algorithm , 2000, J. Comput. Aided Mol. Des..

[561]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[562]  Emma Strubell,et al.  Machine-learned and codified synthesis parameters of oxide materials , 2017, Scientific Data.

[563]  Robert P. Sheridan,et al.  Using a Genetic Algorithm To Suggest Combinatorial Libraries , 1995, J. Chem. Inf. Comput. Sci..

[564]  Olga Kononova,et al.  Unsupervised word embeddings capture latent knowledge from materials science literature , 2019, Nature.

[565]  Rafael Gómez-Bombarelli,et al.  Generative Models for Automatic Chemical Design , 2019, Machine Learning Meets Quantum Physics.

[566]  Ryan P. Adams,et al.  Rapid Prediction of Electron–Ionization Mass Spectrometry Using Neural Networks , 2018, ACS central science.

[567]  Johann Gasteiger,et al.  New Applications of Computers in Chemistry , 1979 .

[568]  Yun Ding,et al.  Discovery of Potent and Selective Inhibitors for ADAMTS-4 through DNA-Encoded Library Technology (ELT). , 2015, ACS medicinal chemistry letters.

[569]  Gisbert Schneider,et al.  SVM-Based Feature Selection for Characterization of Focused Compound Collections , 2004, J. Chem. Inf. Model..

[570]  Lutz Weber,et al.  Optimierung der biologischen Aktivität von kombinatorischen Verbindungsbibliotheken durch einen genetischen Algorithmus , 1995 .

[571]  Tetsuya Taketsugu,et al.  Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method , 2014, J. Comput. Chem..

[572]  Juno Nam,et al.  Linking the Neural Machine Translation and the Prediction of Organic Chemistry Reactions , 2016, ArXiv.

[573]  Prodromos Daoutidis,et al.  Rule-Based Generation of Thermochemical Routes to Biomass Conversion , 2010 .

[574]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001 .

[575]  Fang Liu,et al.  Learning from Failure: Predicting Electronic Structure Calculation Outcomes with Machine Learning Models. , 2019, Journal of chemical theory and computation.

[576]  Marwin H. S. Segler,et al.  Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction. , 2017, Chemistry.

[577]  Xin Yan,et al.  DeepChemStable: Chemical Stability Prediction with an Attention-Based Graph Convolution Network , 2019, J. Chem. Inf. Model..

[578]  Joao Aires de Sousa,et al.  Structure–Spectrum Correlations and Computer‐Assisted Structure Elucidation , 2018 .

[579]  Florent Chevillard,et al.  SCUBIDOO: A Large yet Screenable and Easily Searchable Database of Computationally Created Chemical Compounds Optimized toward High Likelihood of Synthetic Tractability , 2015, J. Chem. Inf. Model..

[580]  H. Schlegel,et al.  Optimization of equilibrium geometries and transition structures , 1982 .

[581]  Matthias Rupp,et al.  Machine learning for quantum mechanics in a nutshell , 2015 .

[582]  Andrey Kazennov,et al.  The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology , 2016, Oncotarget.

[583]  William H. Green,et al.  Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms , 2016, Comput. Phys. Commun..

[584]  C. Fjell,et al.  Identification of novel antibacterial peptides by chemoinformatics and machine learning. , 2009, Journal of medicinal chemistry.

[585]  Fernand Gobet,et al.  Computational Scientific Discovery , 2017 .

[586]  Rajni Verma,et al.  Computer-Aided Protein Directed Evolution: a Review of Web Servers, Databases and other Computational Tools for Protein Engineering , 2012, Computational and structural biotechnology journal.

[587]  A. Valencia,et al.  Text-mining and information-retrieval services for molecular biology , 2005, Genome Biology.

[588]  Stefan H. Unger,et al.  Quantitative Models of Steric Effects , 1977 .

[589]  Stefan Zimmermann,et al.  Gerüstdiversitätsbasierte Synthese und ihre Anwendung bei der Sonden‐ und Wirkstoffsuche , 2016 .

[590]  John B. O. Mitchell,et al.  A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking , 2010, Bioinform..

[591]  David Baker,et al.  Macromolecular modeling with rosetta. , 2008, Annual review of biochemistry.

[592]  Ian H. Witten,et al.  Using Concept Learning for Knowledge Acquisition , 1988, Int. J. Man Mach. Stud..

[593]  Gisbert Schneider,et al.  Automated De Novo Drug Design: Are We Nearly There Yet? , 2019, Angewandte Chemie.

[594]  Jörg Behler,et al.  Hochdimensionale neuronale Netze für Potentialhyperflächen großer molekularer und kondensierter Systeme , 2017 .

[595]  Robert G. Parr,et al.  Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited , 2000 .

[596]  Bruce Ganem,et al.  Strategies for innovation in multicomponent reaction design. , 2009, Accounts of chemical research.