Numerical bifurcation analysis of the bipedal spring-mass model

Abstract The spring–mass model and its numerous extensions are currently one of the best candidates for templates of human and animal locomotion. However, with increasing complexity, their applications can become very time-consuming. In this paper, we present an approach that is based on the calculation of bifurcations in the bipedal spring–mass model for walking. Since the bifurcations limit the region of stable walking, locomotion can be studied by computing the corresponding boundaries. Originally, the model was implemented as a hybrid dynamical system. Our new approach consists of the transformation of the series of initial value problems on different intervals into a single boundary value problem. Using this technique, discontinuities can be avoided and sophisticated numerical methods for studying parametrized nonlinear boundary value problems can be applied. Thus, appropriate extended systems are used to compute transcritical and period-doubling bifurcation points as well as turning points. We show that the resulting boundary value problems can be solved by the simple shooting method with sufficient accuracy, making the application of the more extensive multiple shooting superfluous. The proposed approach is fast, robust to numerical perturbations and allows determining complete manifolds of periodic solutions of the original problem.

[1]  Reinhard Blickhan,et al.  Grounded Running: An Overlooked Strategy for Robots , 2012, AMS.

[2]  H. Keller,et al.  Perturbed bifurcation theory , 1973 .

[3]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[4]  Michael Günther,et al.  A model-experiment comparison of system dynamics for human walking and running. , 2012, Journal of theoretical biology.

[5]  Hubert Schwetlick,et al.  Computing turning points of curves implicitly defined by nonlinear equations depending on a parameter , 1981, Computing.

[6]  Susanne W. Lipfert,et al.  Walking and Running: How Leg Compliance Shapes the Way We Move , 2013 .

[7]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[8]  Martin Hermann,et al.  A First Course in Ordinary Differential Equations , 2014 .

[9]  Pierre-Brice Wieber,et al.  Fast Direct Multiple Shooting Algorithms for Optimal Robot Control , 2005 .

[10]  Andre Seyfarth,et al.  Does a crouched leg posture enhance running stability and robustness? , 2011, Journal of theoretical biology.

[11]  V Segers,et al.  Kinematics of the transition between walking and running when gradually changing speed. , 2007, Gait & posture.

[12]  A. Timokha,et al.  MODAL MODELLING OF THE NONLINEAR RESONANT FLUID SLOSHING IN A RECTANGULAR TANK I: A SINGLE-DOMINANT MODEL , 2005 .

[13]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[14]  Burke Gurney,et al.  Leg length discrepancy. , 2002, Gait & posture.

[15]  R. Seydel,et al.  A Continuation Algorithm with Step Control , 1984 .

[16]  Juergen Rummel,et al.  Manuscript: Stable Running with Segmented Legs ¤ , 2008 .

[17]  H. Weber On the numerical approximation of secondary bifurcation problems , 1981 .

[18]  Juan Pablo Carbajal,et al.  From walking to running a natural transition in the SLIP model using the hopping gait , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[19]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 1994 .

[20]  A. Minetti,et al.  The transition between walking and running in humans: metabolic and mechanical aspects at different gradients. , 1994, Acta physiologica Scandinavica.

[21]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[22]  Kevin M. Lynch,et al.  On the Mechanics of Functional Asymmetry in Bipedal Walking , 2012, IEEE Transactions on Biomedical Engineering.

[23]  F. Prince,et al.  Symmetry and limb dominance in able-bodied gait: a review. , 2000, Gait & posture.

[24]  Juergen Rummel,et al.  Stable and robust walking with compliant legs , 2010, 2010 IEEE International Conference on Robotics and Automation.

[25]  Juergen Rummel,et al.  From Walking to Running , 2009, AMS.

[26]  André Seyfarth,et al.  Leg-adjustment strategies for stable running in three dimensions , 2012, Bioinspiration & biomimetics.

[27]  H. Weber Numerische Behandlung von Verzweigungsproblemen bei gewöhnlichen Differentialgleichungen , 1979 .

[28]  M. Hermann,et al.  Theoretical and numerical studies of nonlinear shell equations , 1999 .

[29]  Reinhard Blickhan,et al.  Compliant leg behaviour explains basic dynamics of walking and running , 2006, Proceedings of the Royal Society B: Biological Sciences.

[30]  T. McMahon,et al.  The mechanics of running: how does stiffness couple with speed? , 1990, Journal of biomechanics.

[31]  R. Alexander,et al.  Vertical movements in walking and running , 2009 .

[32]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[33]  G. Moore,et al.  The numerical treatment of non-trivial bifurcation points , 1980 .

[34]  G. Moore,et al.  The Calculation of Turning Points of Nonlinear Equations , 1980 .

[35]  Raffaele M. Ghigliazza,et al.  TOWARDS A NEUROMECHANICAL MODEL FOR INSECT LOCOMOTION: HYBRID DYNAMICAL SYSTEMS , 2005 .

[36]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[37]  R. Blickhan The spring-mass model for running and hopping. , 1989, Journal of biomechanics.

[38]  Juergen Rummel,et al.  Stable walking with asymmetric legs , 2011, Bioinspiration & biomimetics.

[39]  Susanne W. Lipfert,et al.  Swing leg control in human running , 2010, Bioinspiration & biomimetics.

[40]  Ernest W. Brown Book Review: Les Méthodes nouvelles de la Mécanique Céleste , 1892 .

[41]  M. Hermann,et al.  Numerische Behandlung von Fortsetzungs- und Bifurkationsproblemen bei Randwertaufgaben , 1987 .

[42]  André Seyfarth,et al.  Robots in human biomechanics—a study on ankle push-off in walking , 2012, Bioinspiration & biomimetics.

[43]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[44]  Eugene L. Allgower,et al.  A General View of Minimally Extended Systems for Simple Bifurcation Points , 1997 .

[45]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[46]  Alastair Spence,et al.  Non-simple Turning Points and Cusps , 1982 .

[47]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[48]  A Seyfarth,et al.  Robust and efficient walking with spring-like legs , 2010, Bioinspiration & biomimetics.

[49]  Martin Hermann,et al.  RWPKV: A software package for continuation and bifurcation problems in two-point boundary value problems , 1992 .

[50]  John Guckenheimer,et al.  The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..

[51]  André Seyfarth,et al.  Foot Function in Spring Mass Running , 2009, AMS.

[52]  Andre Seyfarth,et al.  Stance leg control: variation of leg parameters supports stable hopping , 2012, Bioinspiration & biomimetics.

[53]  Susanne W. Lipfert,et al.  Upright human gait did not provide a major mechanical challenge for our ancestors. , 2010, Nature communications.

[54]  Allan D. Jepson,et al.  Folds in Solutions of Two Parameter Systems and Their Calculation. Part I , 1985 .

[55]  M. Hermann,et al.  RWPM: a software package of shooting methods for nonlinear two-point boundary value problems , 1993 .

[56]  Florentin Wörgötter,et al.  From Biomechanical Concepts Towards Fast And Robust Robots , 2008 .

[57]  Willy Govaerts,et al.  Numerical Continuation of Branch Points of Equilibria and Periodic orbits , 2005, Int. J. Bifurc. Chaos.

[58]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[59]  Martin Hermann Numerik gewöhnlicher Differentialgleichungen: Anfangs- und Randwertprobleme , 2004 .