Numerical bifurcation analysis of the bipedal spring-mass model
暂无分享,去创建一个
[1] Reinhard Blickhan,et al. Grounded Running: An Overlooked Strategy for Robots , 2012, AMS.
[2] H. Keller,et al. Perturbed bifurcation theory , 1973 .
[3] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[4] Michael Günther,et al. A model-experiment comparison of system dynamics for human walking and running. , 2012, Journal of theoretical biology.
[5] Hubert Schwetlick,et al. Computing turning points of curves implicitly defined by nonlinear equations depending on a parameter , 1981, Computing.
[6] Susanne W. Lipfert,et al. Walking and Running: How Leg Compliance Shapes the Way We Move , 2013 .
[7] Thomas A. Henzinger,et al. The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..
[8] Martin Hermann,et al. A First Course in Ordinary Differential Equations , 2014 .
[9] Pierre-Brice Wieber,et al. Fast Direct Multiple Shooting Algorithms for Optimal Robot Control , 2005 .
[10] Andre Seyfarth,et al. Does a crouched leg posture enhance running stability and robustness? , 2011, Journal of theoretical biology.
[11] V Segers,et al. Kinematics of the transition between walking and running when gradually changing speed. , 2007, Gait & posture.
[12] A. Timokha,et al. MODAL MODELLING OF THE NONLINEAR RESONANT FLUID SLOSHING IN A RECTANGULAR TANK I: A SINGLE-DOMINANT MODEL , 2005 .
[13] Steven H. Strogatz,et al. Nonlinear Dynamics and Chaos , 2024 .
[14] Burke Gurney,et al. Leg length discrepancy. , 2002, Gait & posture.
[15] R. Seydel,et al. A Continuation Algorithm with Step Control , 1984 .
[16] Juergen Rummel,et al. Manuscript: Stable Running with Segmented Legs ¤ , 2008 .
[17] H. Weber. On the numerical approximation of secondary bifurcation problems , 1981 .
[18] Juan Pablo Carbajal,et al. From walking to running a natural transition in the SLIP model using the hopping gait , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.
[19] Steven H. Strogatz,et al. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 1994 .
[20] A. Minetti,et al. The transition between walking and running in humans: metabolic and mechanical aspects at different gradients. , 1994, Acta physiologica Scandinavica.
[21] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[22] Kevin M. Lynch,et al. On the Mechanics of Functional Asymmetry in Bipedal Walking , 2012, IEEE Transactions on Biomedical Engineering.
[23] F. Prince,et al. Symmetry and limb dominance in able-bodied gait: a review. , 2000, Gait & posture.
[24] Juergen Rummel,et al. Stable and robust walking with compliant legs , 2010, 2010 IEEE International Conference on Robotics and Automation.
[25] Juergen Rummel,et al. From Walking to Running , 2009, AMS.
[26] André Seyfarth,et al. Leg-adjustment strategies for stable running in three dimensions , 2012, Bioinspiration & biomimetics.
[27] H. Weber. Numerische Behandlung von Verzweigungsproblemen bei gewöhnlichen Differentialgleichungen , 1979 .
[28] M. Hermann,et al. Theoretical and numerical studies of nonlinear shell equations , 1999 .
[29] Reinhard Blickhan,et al. Compliant leg behaviour explains basic dynamics of walking and running , 2006, Proceedings of the Royal Society B: Biological Sciences.
[30] T. McMahon,et al. The mechanics of running: how does stiffness couple with speed? , 1990, Journal of biomechanics.
[31] R. Alexander,et al. Vertical movements in walking and running , 2009 .
[32] H. Bock,et al. A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .
[33] G. Moore,et al. The numerical treatment of non-trivial bifurcation points , 1980 .
[34] G. Moore,et al. The Calculation of Turning Points of Nonlinear Equations , 1980 .
[35] Raffaele M. Ghigliazza,et al. TOWARDS A NEUROMECHANICAL MODEL FOR INSECT LOCOMOTION: HYBRID DYNAMICAL SYSTEMS , 2005 .
[36] Henri Poincaré,et al. méthodes nouvelles de la mécanique céleste , 1892 .
[37] R. Blickhan. The spring-mass model for running and hopping. , 1989, Journal of biomechanics.
[38] Juergen Rummel,et al. Stable walking with asymmetric legs , 2011, Bioinspiration & biomimetics.
[39] Susanne W. Lipfert,et al. Swing leg control in human running , 2010, Bioinspiration & biomimetics.
[40] Ernest W. Brown. Book Review: Les Méthodes nouvelles de la Mécanique Céleste , 1892 .
[41] M. Hermann,et al. Numerische Behandlung von Fortsetzungs- und Bifurkationsproblemen bei Randwertaufgaben , 1987 .
[42] André Seyfarth,et al. Robots in human biomechanics—a study on ankle push-off in walking , 2012, Bioinspiration & biomimetics.
[43] Anil V. Rao,et al. Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .
[44] Eugene L. Allgower,et al. A General View of Minimally Extended Systems for Simple Bifurcation Points , 1997 .
[45] G. Sell,et al. The Hopf Bifurcation and Its Applications , 1976 .
[46] Alastair Spence,et al. Non-simple Turning Points and Cusps , 1982 .
[47] Begnaud Francis Hildebrand,et al. Introduction to numerical analysis: 2nd edition , 1987 .
[48] A Seyfarth,et al. Robust and efficient walking with spring-like legs , 2010, Bioinspiration & biomimetics.
[49] Martin Hermann,et al. RWPKV: A software package for continuation and bifurcation problems in two-point boundary value problems , 1992 .
[50] John Guckenheimer,et al. The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..
[51] André Seyfarth,et al. Foot Function in Spring Mass Running , 2009, AMS.
[52] Andre Seyfarth,et al. Stance leg control: variation of leg parameters supports stable hopping , 2012, Bioinspiration & biomimetics.
[53] Susanne W. Lipfert,et al. Upright human gait did not provide a major mechanical challenge for our ancestors. , 2010, Nature communications.
[54] Allan D. Jepson,et al. Folds in Solutions of Two Parameter Systems and Their Calculation. Part I , 1985 .
[55] M. Hermann,et al. RWPM: a software package of shooting methods for nonlinear two-point boundary value problems , 1993 .
[56] Florentin Wörgötter,et al. From Biomechanical Concepts Towards Fast And Robust Robots , 2008 .
[57] Willy Govaerts,et al. Numerical Continuation of Branch Points of Equilibria and Periodic orbits , 2005, Int. J. Bifurc. Chaos.
[58] John T. Betts,et al. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .
[59] Martin Hermann. Numerik gewöhnlicher Differentialgleichungen: Anfangs- und Randwertprobleme , 2004 .