An efficient implementation of decomposable parameter spaces

A methodology called the CIPS (cooperative independent parameter spaces) approach for reconstructing parametrized regular surfaces from range data is presented. The parametrizations are decomposed into subsets of parameters. The conjunction of the individual parameter detections in these subsets produces the full parametrization for a surface. The detections are accomplished using a multiwindow parameter estimation technique, multiresolution k-tree parameter space searching and voting, and a conflict resolution process that eliminates invalid parameter hypotheses and insures a single unique parametrization for each surface region. The overall decomposition of parameter detection spaces can be organized into a serial, parallel or hybrid architecture without problems of parameter crosstalk between spaces. Many of the major shortcomings of the Hough transform and other parameter space voting approaches are directly addressed by these methods. An implementation that detects spheres and cylinders in real, low-resolution range images is presented, and it is shown to be fast and accurate.<<ETX>>

[1]  R. W. Taylor Computer vision in a heterogeneous software and hardware environment , 1990, Sixth Conference on Artificial Intelligence for Applications.

[2]  Peter J. Burt,et al.  Smart sensing within a pyramid vision machine , 1988, Proc. IEEE.

[3]  Ruud M. Bolle,et al.  Visual recognition using concurrent and layered parameter networks , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Christopher M. Brown Inherent Bias and Noise in the Hough Transform , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Dana H. Ballard,et al.  Parameter Networks: Towards a Theory of Low-Level Vision , 1981, IJCAI.

[6]  Andrea Califano,et al.  Feature Recognition Using Correlated Information Contained in Multiple Neighborboods , 1988, AAAI.

[7]  Xin Chen,et al.  Fast segmentation of range images into planar regions , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Anthony P. Reeves,et al.  Identification of Three-Dimensional Objects Using Range Information , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ruud M. Bolle,et al.  A Homogeneous Framework for Visual Recognition , 1989, IJCAI.

[10]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[11]  Avinash C. Kak,et al.  Determination of the identity, position and orientation of the topmost object in a pile , 1986, Comput. Vis. Graph. Image Process..

[12]  Ruud M. Bolle,et al.  Localized Noise Propagation Effects In Parameter Transforms , 1988, Other Conferences.

[13]  Stephen D. Shapiro,et al.  Feature space transforms for curve detection , 1978, Pattern Recognition.

[14]  Anil K. Jain,et al.  On reliable curvature estimation , 1989, CVPR.

[15]  Ruud M. Bolle,et al.  Differential Geometry Applied To Least-Square Error Surface Approximations , 1987, Photonics West - Lasers and Applications in Science and Engineering.

[16]  Daniel Sabbah Computing with connections in visual recognition of origami objects , 1985 .

[17]  Ruud M. Bolle,et al.  Generalized neighborhoods: a new approach to complex parameter feature extraction , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Anthony P Reeves,et al.  Fast segmentation of range imagery into planar regions , 1989, Comput. Vis. Graph. Image Process..

[19]  Amar Mitiche,et al.  3-D Object Representation from Range Data Using Intrinsic Surface Properties , 1987 .

[20]  Amit Bandapadhay,et al.  Searching parameter spaces with noisy linear constraints , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  W. Greub Linear Algebra , 1981 .

[22]  Joseph O'Rourke Dynamically Quantized Spaces for Focusing the Hough Transform , 1981, IJCAI.

[23]  Kenneth R. Sloan,et al.  Dynamically Quantized Pyramids , 1981, IJCAI.

[24]  Kenneth S. Roberts,et al.  A new representation for a line , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Katsushi Ikeuchi Recognition of 3-D Objects Using the Extended Gaussian Image , 1981, IJCAI.

[26]  Russell H. Taylor Improved surface extraction via parameter-space voting techniques , 1990, Other Conferences.