RigNet: Repetitive Image Guided Network for Depth Completion

[1]  Yao Zhao,et al.  PanoFormer: Panorama Transformer for Indoor 360° Depth Estimation , 2022, ArXiv.

[2]  Guangming Shi,et al.  Robust Depth Completion with Uncertainty-Driven Loss Functions , 2021, AAAI.

[3]  Baobei Xu,et al.  Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Kang Liao,et al.  Distortion-Tolerant Monocular Depth Estimation on Omnidirectional Images Using Dual-Cubemap , 2021, 2021 IEEE International Conference on Multimedia and Expo (ICME).

[5]  In So Kweon,et al.  Depth Completion using Plane-Residual Representation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Daniel Morris,et al.  Depth Completion with Twin Surface Extrapolation at Occlusion Boundaries , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Camillo J. Taylor,et al.  Bayesian Deep Basis Fitting for Depth Completion with Uncertainty , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  Gaurav Sharma,et al.  Beyond Image to Depth: Improving Depth Prediction using Echoes , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Bin Li,et al.  PENet: Towards Precise and Efficient Image Guided Depth Completion , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Mengmeng Wang,et al.  FCFR-Net: Feature Fusion based Coarse-to-Fine Residual Learning for Depth Completion , 2020, AAAI.

[11]  Dacheng Tao,et al.  Adaptive Context-Aware Multi-Modal Network for Depth Completion , 2020, IEEE Transactions on Image Processing.

[12]  A. Yuille,et al.  DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Jie Tang,et al.  Learning Guided Convolutional Network for Depth Completion , 2019, IEEE Transactions on Image Processing.

[14]  Yong Liu,et al.  FCFR-Net: Feature Fusion based Coarse-to-Fine Residual Learning for Monocular Depth Completion , 2020, ArXiv.

[15]  Kyungdon Joo,et al.  Non-Local Spatial Propagation Network for Depth Completion , 2020, ECCV.

[16]  Jian Yao,et al.  Deformable Spatial Propagation Networks For Depth Completion , 2020, International Conference on Information Photonics.

[17]  Nick Barnes,et al.  From Depth What Can You See? Depth Completion via Auxiliary Image Reconstruction , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Ruigang Yang,et al.  Channel Attention Based Iterative Residual Learning for Depth Map Super-Resolution , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Kristen Grauman,et al.  VisualEchoes: Spatial Image Representation Learning through Echolocation , 2020, ECCV.

[20]  Zejian Yuan,et al.  A Multi-Scale Guided Cascade Hourglass Network for Depth Completion , 2020, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[21]  Quoc V. Le,et al.  EfficientDet: Scalable and Efficient Object Detection , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Ruigang Yang,et al.  CSPN++: Learning Context and Resource Aware Convolutional Spatial Propagation Networks for Depth Completion , 2019, AAAI.

[23]  Zhi Tang,et al.  CBNet: A Novel Composite Backbone Network Architecture for Object Detection , 2019, AAAI.

[24]  Michael Felsberg,et al.  Confidence Propagation through CNNs for Guided Sparse Depth Regression , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Ruigang Yang,et al.  Learning Depth with Convolutional Spatial Propagation Network , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Enhua Wu,et al.  Squeeze-and-Excitation Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Raquel Urtasun,et al.  Learning Joint 2D-3D Representations for Depth Completion , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[28]  Hujun Bao,et al.  Depth Completion From Sparse LiDAR Data With Depth-Normal Constraints , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[29]  Tsung-Han Wu,et al.  Indoor Depth Completion with Boundary Consistency and Self-Attention , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[30]  Nicu Sebe,et al.  Pattern-Affinitive Propagation Across Depth, Surface Normal and Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Quoc V. Le,et al.  NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Jian Yang,et al.  Selective Kernel Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Yunfei Long,et al.  Depth Coefficients for Depth Completion , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Luc Van Gool,et al.  Sparse and Noisy LiDAR Completion with RGB Guidance and Uncertainty , 2019, 2019 16th International Conference on Machine Vision Applications (MVA).

[35]  Stefano Soatto,et al.  Dense Depth Posterior (DDP) From Single Image and Sparse Range , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  M. Pollefeys,et al.  DeepLiDAR: Deep Surface Normal Guided Depth Prediction for Outdoor Scene From Sparse LiDAR Data and Single Color Image , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Torsten Sattler,et al.  Real-Time Dense Mapping for Self-Driving Vehicles using Fisheye Cameras , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[38]  Sertac Karaman,et al.  Self-Supervised Sparse-to-Dense: Self-Supervised Depth Completion from LiDAR and Monocular Camera , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[39]  Fawzi Nashashibi,et al.  Sparse and Dense Data with CNNs: Depth Completion and Semantic Segmentation , 2018, 2018 International Conference on 3D Vision (3DV).

[40]  Yinda Zhang,et al.  Deep Depth Completion of a Single RGB-D Image , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[41]  Simon Lucey,et al.  Deep Convolutional Compressed Sensing for LiDAR Depth Completion , 2018, ACCV.

[42]  Xiaogang Wang,et al.  Context Encoding for Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[43]  Shu Liu,et al.  Path Aggregation Network for Instance Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[44]  Steven Lake Waslander,et al.  In Defense of Classical Image Processing: Fast Depth Completion on the CPU , 2018, 2018 15th Conference on Computer and Robot Vision (CRV).

[45]  Nuno Vasconcelos,et al.  Cascade R-CNN: Delving Into High Quality Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[46]  Sertac Karaman,et al.  Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[47]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[48]  Germán Ros,et al.  CARLA: An Open Urban Driving Simulator , 2017, CoRL.

[49]  Torsten Sattler,et al.  3D visual perception for self-driving cars using a multi-camera system: Calibration, mapping, localization, and obstacle detection , 2017, Image Vis. Comput..

[50]  Thomas Brox,et al.  Sparsity Invariant CNNs , 2017, 2017 International Conference on 3D Vision (3DV).

[51]  T. Moore,et al.  Neural Mechanisms of Selective Visual Attention. , 2017, Annual review of psychology.

[52]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Qiao Wang,et al.  VirtualWorlds as Proxy for Multi-object Tracking Analysis , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Wei Xu,et al.  Look and Think Twice: Capturing Top-Down Visual Attention with Feedback Convolutional Neural Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[57]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[59]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[60]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[61]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[62]  Horst Bischof,et al.  Image Guided Depth Upsampling Using Anisotropic Total Generalized Variation , 2013, 2013 IEEE International Conference on Computer Vision.

[63]  Arindam Dey,et al.  Tablet versus phone: Depth perception in handheld augmented reality , 2012, 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[64]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[65]  Diane M. Beck,et al.  Top-down and bottom-up mechanisms in biasing competition in the human brain , 2009, Vision Research.

[66]  Will Spijkers,et al.  Depth Perception in Virtual Reality: Distance Estimations in Peri- and Extrapersonal Space , 2008, Cyberpsychology Behav. Soc. Netw..

[67]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.