Light Collages: lighting design for effective visualization

We introduce Light Collages - a lighting design system for effective visualization based on principles of human perception. Artists and illustrators enhance perception of features with lighting that is locally consistent and globally inconsistent. Inspired by these techniques, we design the placement of light sources to convey a greater sense of realism and better perception of shape with globally inconsistent lighting. Our algorithm segments the objects into local surface patches and uses a number of perceptual heuristics, such as highlights, shadows, and silhouettes, to enhance the perception of shape. We show our results on scientific and sculptured datasets.

[1]  Katsushi Ikeuchi,et al.  Object shape and reflectance modeling from observation , 1997, SIGGRAPH.

[2]  Paul Debevec,et al.  Inverse global illumination: Recovering re?ectance models of real scenes from photographs , 1998 .

[3]  Stefan Gumhold,et al.  Maximum entropy light source placement , 2002, IEEE Visualization, 2002. VIS 2002..

[4]  Michael F. Cohen,et al.  Radioptimization: goal based rendering , 1993, SIGGRAPH.

[5]  Donald P. Greenberg,et al.  A user interface for interactive cinematic shadow design , 2002, SIGGRAPH.

[6]  Pat Hanrahan,et al.  A signal-processing framework for inverse rendering , 2001, SIGGRAPH.

[7]  James Arvo,et al.  Painting with light , 1993, SIGGRAPH.

[8]  Patrick Cavanagh,et al.  Pictorial art and vision , 1999 .

[9]  A. James Stewart,et al.  Vicinity shading for enhanced perception of volumetric data , 2003, IEEE Visualization, 2003. VIS 2003..

[10]  A. Grafstein MIT Encyclopedia of the Cognitive Sciences , 2000 .

[11]  Elaine Cohen,et al.  A non-photorealistic lighting model for automatic technical illustration , 1998, SIGGRAPH.

[12]  Dani Lischinski,et al.  Automatic Lighting Design using a Perceptual Quality Metric , 2001, Comput. Graph. Forum.

[13]  Jörg Hamel A new lighting model for computer-generated line drawings , 2000 .

[14]  António Augusto de Sousa,et al.  Lighting Design: A Goal Based Approach using Optimisation , 1999, Rendering Techniques.

[15]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[16]  Marc Levoy,et al.  Unwrapping and Visualizing Cuneiform Tablets , 2002, IEEE Computer Graphics and Applications.

[17]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Peter-Pike J. Sloan,et al.  The Lit Sphere: A Model for Capturing NPR Shading from Art , 2001, Graphics Interface.

[19]  Pat Hanrahan,et al.  Conveying shape and features with image-based relighting , 2003, IEEE Visualization, 2003. VIS 2003..

[20]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[21]  Gavin S. P. Miller,et al.  Efficient algorithms for local and global accessibility shading , 1994, SIGGRAPH.

[22]  Stefan Schlechtweg,et al.  Non-photorealistic computer graphics: modeling, rendering, and animation , 2002 .

[23]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[24]  Ernst Gombrich The Heritage of Apelles , 1976 .

[25]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[26]  Michael Halle,et al.  LightKit: a lighting system for effective visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[27]  Nelson L. Max,et al.  Bidirectional reflection functions from surface bump maps , 1987, SIGGRAPH.

[28]  Pierre Poulin,et al.  Lights from highlights and shadows , 1992, I3D '92.

[29]  Gabriel Taubin,et al.  Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.