Gradient and Hessian of Joint Probability Function with Applications on Chance-Constrained Programs

Joint probability function refers to the probability function that requires multiple conditions to satisfy simultaneously. It appears naturally in chance-constrained programs. In this paper, we derive closed-form expressions of the gradient and Hessian of joint probability functions and develop Monte Carlo estimators of them. We then design a Monte Carlo algorithm, based on these estimators, to solve chance-constrained programs. Our numerical study shows that the algorithm works well, especially only with the gradient estimators.

[1]  A. Charnes,et al.  Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil , 1958 .

[2]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[3]  B. L. Miller,et al.  Chance Constrained Programming with Joint Constraints , 1965 .

[4]  J. Marsden,et al.  Elementary classical analysis , 1974 .

[5]  E. Todini,et al.  A stable estimator for linear models: 2. Real world hydrologic applications , 1976 .

[6]  András Prékopa,et al.  Serially Linked Reservoir System Design Using Stochastic Programing , 1978 .

[7]  Xi-Ren Cao,et al.  Perturbation analysis and optimization of queueing networks , 1983 .

[8]  S. Uryasev A differentiation formula for integrals overseas given by inclusion , 1989 .

[9]  Alan Weiss,et al.  Sensitivity Analysis for Simulations via Likelihood Ratios , 1989, Oper. Res..

[10]  Peter W. Glynn,et al.  Likelihood ratio gradient estimation for stochastic systems , 1990, CACM.

[11]  R. Durrett Probability: Theory and Examples , 1993 .

[12]  Paul Glasserman,et al.  Gradient Estimation Via Perturbation Analysis , 1990 .

[13]  Michael C. Fu,et al.  Conditional Monte Carlo , 1997 .

[14]  J Figueira,et al.  Stochastic Programming , 1998, J. Oper. Res. Soc..

[15]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[16]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[17]  John Odenckantz,et al.  Nonparametric Statistics for Stochastic Processes: Estimation and Prediction , 2000, Technometrics.

[18]  Darinka Dentcheva,et al.  Dual methods for probabilistic optimization problems* , 2004, Math. Methods Oper. Res..

[19]  Xiang Li,et al.  Probabilistically Constrained Linear Programs and Risk-Adjusted Controller Design , 2005, SIAM J. Optim..

[20]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[21]  K. Marti Stochastic Optimization Methods , 2005 .

[22]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[23]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[24]  L. Jeff Hong,et al.  Kernel estimation for quantile sensitivities , 2007, 2007 Winter Simulation Conference.

[25]  Michael C. Fu,et al.  Conditional Monte Carlo Estimation of Quantile Sensitivities , 2009, Manag. Sci..

[26]  L. Jeff Hong,et al.  Estimating Quantile Sensitivities , 2009, Oper. Res..

[27]  L. Jeff Hong,et al.  Simulating Sensitivities of Conditional Value at Risk , 2009, Manag. Sci..

[28]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[29]  Melvyn Sim,et al.  From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization , 2010, Oper. Res..

[30]  L. Jeff Hong,et al.  Pathwise Estimation of Probability Sensitivities Through Terminating or Steady-State Simulations , 2010, Oper. Res..

[31]  M. Goh,et al.  Stochastic Optimization Problems with CVaR Risk Measure and Their Sample Average Approximation , 2010 .

[32]  Yi Yang,et al.  Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach , 2011, Oper. Res..

[33]  Jian-Qiang Hu,et al.  Conditional Monte Carlo: Gradient Estimation and Optimization Applications , 2012 .

[34]  L. J. Hong,et al.  A smooth Monte Carlo approach to joint chance-constrained programs , 2013 .

[35]  Liwei Zhang,et al.  Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo , 2014, INFORMS J. Comput..

[36]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[37]  Yong Wang,et al.  Asymptotic Analysis of Sample Average Approximation for Stochastic Optimization Problems with Joint Chance Constraints via Conditional Value at Risk and Difference of Convex Functions , 2014, J. Optim. Theory Appl..

[38]  Henry Lam,et al.  Recovering Best Statistical Guarantees via the Empirical Divergence-Based Distributionally Robust Optimization , 2016, Oper. Res..