Detecting and Counting Small Subgraphs, and Evaluating a Parameterized Tutte Polynomial: Lower Bounds via Toroidal Grids and Cayley Graph Expanders

Given a graph property $\Phi$, we consider the problem $\mathtt{EdgeSub}(\Phi)$, where the input is a pair of a graph $G$ and a positive integer $k$, and the task is to decide whether $G$ contains a $k$-edge subgraph that satisfies $\Phi$. Specifically, we study the parameterized complexity of $\mathtt{EdgeSub}(\Phi)$ and of its counting problem $\#\mathtt{EdgeSub}(\Phi)$ with respect to both approximate and exact counting. We obtain a complete picture for minor-closed properties $\Phi$: the decision problem $\mathtt{EdgeSub}(\Phi)$ always admits an FPT algorithm and the counting problem $\#\mathtt{EdgeSub}(\Phi)$ always admits an FPTRAS. For exact counting, we present an exhaustive and explicit criterion on the property $\Phi$ which, if satisfied, yields fixed-parameter tractability and otherwise $\#\mathsf{W[1]}$-hardness. Additionally, most of our hardness results come with an almost tight conditional lower bound under the so-called Exponential Time Hypothesis, ruling out algorithms for $\#\mathtt{EdgeSub}(\Phi)$ that run in time $f(k)\cdot|G|^{o(k/\log k)}$ for any computable function $f$. As a main technical result, we gain a complete understanding of the coefficients of toroidal grids and selected Cayley graph expanders in the homomorphism basis of $\#\mathtt{EdgeSub}(\Phi)$. This allows us to establish hardness of exact counting using the Complexity Monotonicity framework due to Curticapean, Dell and Marx (STOC'17). Our methods can also be applied to a parameterized variant of the Tutte Polynomial $T^k_G$ of a graph $G$, to which many known combinatorial interpretations of values of the (classical) Tutte Polynomial can be extended. As an example, $T^k_G(2,1)$ corresponds to the number of $k$-forests in the graph $G$. Our techniques allow us to completely understand the parametrized complexity of computing the evaluation of $T^k_G$ at every pair of rational coordinates $(x,y)$.

[1]  D. Corneil,et al.  An Efficient Algorithm for Graph Isomorphism , 1970, JACM.

[2]  Ronitt Rubinfeld,et al.  Short paths in expander graphs , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[3]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[4]  Dániel Marx,et al.  Exponential Time Complexity of the Permanent and the Tutte Polynomial , 2010, TALG.

[5]  Joshua A. Grochow,et al.  Network Motif Discovery Using Subgraph Enumeration and Symmetry-Breaking , 2007, RECOMB.

[6]  Gideon Schreiber,et al.  Understanding hydrogen-bond patterns in proteins using network motifs , 2009, Bioinform..

[7]  Thore Husfeldt,et al.  Extensor-coding , 2018, STOC.

[8]  Dániel Marx,et al.  Complexity of Counting Subgraphs: Only the Boundedness of the Vertex-Cover Number Counts , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[9]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[10]  Radu Curticapean,et al.  Counting Matchings of Size k Is W[1]-Hard , 2013, ICALP.

[11]  Fedor V. Fomin,et al.  Efficient Computation of Representative Sets with Applications in Parameterized and Exact Algorithms , 2013, SODA.

[12]  Dániel Marx,et al.  Homomorphisms are a good basis for counting small subgraphs , 2017, STOC.

[13]  Marc Roth,et al.  Counting Answers to Existential Questions , 2019, ICALP.

[14]  Johannes Schmitt,et al.  Counting Small Induced Subgraphs Satisfying Monotone Properties , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[15]  Alina Vdovina,et al.  Cayley graph expanders and groups of finite width , 2008, 0809.1560.

[16]  Bingkai Lin,et al.  The Parameterized Complexity of the k-Biclique Problem , 2018, J. ACM.

[17]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[18]  Jörg Flum,et al.  The Parameterized Complexity of Counting Problems , 2004, SIAM J. Comput..

[19]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[20]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[21]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[22]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[23]  Radu Curticapean,et al.  The simple, little and slow things count: on parameterized counting complexity , 2015, Bull. EATCS.

[24]  Kitty Meeks,et al.  Approximately counting and sampling small witnesses using a colourful decision oracle , 2019, SODA.

[25]  Falk Schreiber,et al.  Frequency Concepts and Pattern Detection for the Analysis of Motifs in Networks , 2005, Trans. Comp. Sys. Biology.

[26]  Venkatesh Raman,et al.  Parameterized complexity of finding subgraphs with hereditary properties , 2000, Theor. Comput. Sci..

[27]  Bernd Voigt,et al.  Finding Minimally Weighted Subgraphs , 1991, WG.

[28]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[29]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[30]  Fenghui Zhang,et al.  Randomized Divide-and-Conquer: Improved Path, Matching, and Packing Algorithms , 2009 .

[31]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[32]  Marc Roth,et al.  Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP , 2016, IPEC.

[33]  Mark Jerrum,et al.  Some Hard Families of Parameterized Counting Problems , 2013, ACM Trans. Comput. Theory.

[34]  Marc Roth,et al.  Parameterized Counting of Trees, Forests and Matroid Bases , 2016, CSR.

[35]  Alan M. Frieze,et al.  Electronic Colloquium on Computational Complexity Polynomial Time Randomised Approximation Schemes for Tutte-grr Othendieck Invariants: the Dense Case , 2022 .

[36]  Mam Riess Jones Color Coding , 1962, Human factors.

[37]  Andreas Björklund,et al.  Narrow sieves for parameterized paths and packings , 2010, J. Comput. Syst. Sci..

[38]  Dániel Marx,et al.  On tree width, bramble size, and expansion , 2009, J. Comb. Theory, Ser. B.

[39]  Ge Xia,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[40]  Hubie Chen,et al.  Counting Answers to Existential Positive Queries: A Complexity Classification , 2016, PODS.

[41]  Kitty Meeks,et al.  The challenges of unbounded treewidth in parameterised subgraph counting problems , 2014, Discret. Appl. Math..

[42]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[43]  Leslie Ann Goldberg,et al.  The Complexity of Computing the Sign of the Tutte Polynomial , 2012, SIAM J. Comput..

[44]  Yijia Chen,et al.  Understanding the Complexity of Induced Subgraph Isomorphisms , 2008, ICALP.

[45]  Mark Jerrum,et al.  The parameterised complexity of counting connected subgraphs and graph motifs , 2013, J. Comput. Syst. Sci..

[46]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[47]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[48]  Noga Alon,et al.  Biomolecular network motif counting and discovery by color coding , 2008, ISMB.

[49]  Thomas Schwentick,et al.  When is the evaluation of conjunctive queries tractable? , 2001, STOC '01.

[50]  Michael R. Fellows,et al.  FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .

[51]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[52]  Andreas Björklund,et al.  The Parity of Set Systems Under Random Restrictions with Applications to Exponential Time Problems , 2015, ICALP.

[53]  Peter Jonsson,et al.  The complexity of counting homomorphisms seen from the other side , 2004, Theor. Comput. Sci..

[54]  Thorsten Strufe,et al.  StreaM - A Stream-Based Algorithm for Counting Motifs in Dynamic Graphs , 2015, AlCoB.

[55]  Martin Grohe,et al.  Parameterized complexity for the database theorist , 2002, SGMD.

[56]  Yijia Chen,et al.  The Hardness of Embedding Grids and Walls , 2017, WG.

[57]  Ashok K. Chandra,et al.  Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.

[58]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[59]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[60]  Venkatesh Raman,et al.  Approximation Algorithms for Some Parameterized Counting Problems , 2002, ISAAC.

[61]  Dave Witte Morris,et al.  Cayley digraphs of prime-power order are hamiltonian , 1986, J. Comb. Theory, Ser. B.

[62]  Dirk L. Vertigan,et al.  Bicycle Dimension and Special Points of the Tutte Polynomial , 1998, J. Comb. Theory, Ser. B.

[63]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[64]  Andreas Björklund,et al.  Computing the Tutte Polynomial in Vertex-Exponential Time , 2007, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[65]  Andreas Björklund,et al.  The Fine-Grained Complexity of Computing the Tutte Polynomial of a Linear Matroid , 2020, ArXiv.

[66]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[67]  Johannes Schmitt,et al.  Counting Induced Subgraphs: A Topological Approach to #W[1]-hardness , 2018, Algorithmica.

[68]  Fred B. Schneider,et al.  A Theory of Graphs , 1993 .

[69]  David Galvin,et al.  A topological approach to evasiveness , 2010 .

[70]  Arnaud Durand,et al.  Structural Tractability of Counting of Solutions to Conjunctive Queries , 2013, ICDT '13.

[71]  Mark Jerrum,et al.  The parameterised complexity of counting even and odd induced subgraphs , 2014, Comb..

[72]  Ge Xia,et al.  Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..

[73]  M. Bálek,et al.  Large Networks and Graph Limits , 2022 .

[74]  Johannes Schmitt,et al.  Counting Induced Subgraphs: An Algebraic Approach to #W[1]-hardness , 2019, MFCS.

[75]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..