Confidence Intervals for Seroprevalence

This paper concerns the construction of confidence intervals in standard seroprevalence surveys. In particular, we discuss methods for constructing confidence intervals for the proportion of individuals in a population infected with a disease using a sample of antibody test results and measurements of the test’s false positive and false negative rates. We begin by documenting erratic behavior in the coverage probabilities of standard Wald and percentile bootstrap intervals when applied to this problem. We then consider two alternative sets of intervals constructed with test inversion. The first set of intervals are approximate, using either asymptotic or bootstrap approximation to the finite-sample distribution of a chosen test statistic. We consider several choices of test statistic, including maximum likelihood estimators and generalized likelihood ratio statistics. We show with simulation that, at empirically relevant parameter values and sample sizes, the coverage probabilities for these intervals are close to their nominal level and are approximately equi-tailed. The second set of intervals are shown to contain the true parameter value with probability at least equal to the nominal level, but can be conservative in finite samples.

[1]  Thomas J. DiCiccio,et al.  ON BOOTSTRAP PROCEDURES FOR SECOND-ORDER ACCURATE CONFIDENCE LIMITS IN PARAMETRIC MODELS , 1999 .

[2]  Peter Hall,et al.  Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters , 1982 .

[3]  L. Brown,et al.  Interval Estimation for a Binomial Proportion , 2001 .

[4]  R. Mukerjee,et al.  Probability Matching Priors: Higher Order Asymptotics , 2004 .

[5]  A. Gelman,et al.  Bayesian Analysis of Tests with Unknown Specificity and Sensitivity , 2020, medRxiv.

[6]  A. Robinson Applied Asymptotics: Case Studies in Small-sample Statistics , 2008 .

[7]  Teppei Yamamoto Understanding the Past: Statistical Analysis of Causal Attribution , 2012 .

[8]  Thomas A. Severini,et al.  On the relationship between Bayesian and non-Bayesian elimination of nuisance parameters , 1999 .

[9]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[10]  John P. A. Ioannidis,et al.  Exact inference for disease prevalence based on a test with unknown specificity and sensitivity , 2020, Journal of applied statistics.

[11]  S. Mallapaty Antibody tests suggest that coronavirus infections vastly exceed official counts , 2020, Nature.

[12]  S. Walter,et al.  Estimating the error rates of diagnostic tests. , 1980, Biometrics.

[13]  G. Alastair Young,et al.  Parametric bootstrapping with nuisance parameters , 2005 .

[14]  G. Alter,et al.  The Power of Antibody-Based Surveillance , 2020, The New England journal of medicine.

[15]  Peter Ganong,et al.  Why Do Borrowers Default on Mortgages? A New Method for Causal Attribution , 2020, SSRN Electronic Journal.

[16]  S D Walter,et al.  Estimation of test error rates, disease prevalence and relative risk from misclassified data: a review. , 1988, Journal of clinical epidemiology.

[17]  Alan Agresti,et al.  Unconditional small-sample confidence intervals for the odds ratio. , 2002, Biostatistics.

[18]  J. Ioannidis,et al.  COVID-19 antibody seroprevalence in Santa Clara County, California , 2020, medRxiv.

[19]  J. L. Jensen The modified signed likelihood statistic and saddlepoint approximations , 1992 .

[20]  R. Redfield,et al.  Covid-19 — Navigating the Uncharted , 2020, The New England journal of medicine.

[21]  Mervyn J. Silvapulle,et al.  A Test in the Presence of Nuisance Parameters , 1996 .

[22]  N. Reid,et al.  On conditional inference for a real parameter: A differential approach on the sample space , 1988 .

[23]  Anthony C. Davison,et al.  Applied Asymptotics: Case Studies in Small-Sample Statistics , 2007 .

[24]  Thomas J. DiCiccio,et al.  Simple and accurate one‐sided inference from signed roots of likelihood ratios , 2001 .

[25]  Florian Krammer,et al.  Serology assays to manage COVID-19 , 2020, Science.

[26]  Azeem M. Shaikh,et al.  Consonance and the closure method in multiple testing , 2009 .

[27]  P. Glasziou,et al.  Estimating the seroprevalence of SARS-CoV-2 infections: systematic review , 2020, medRxiv.

[28]  B. Efron Nonparametric standard errors and confidence intervals , 1981 .

[29]  B. Gladen,et al.  Estimating prevalence from the results of a screening test. , 1978, American journal of epidemiology.

[30]  B. Efron Bootstrap confidence intervals for a class of parametric problems , 1985 .

[31]  Petter Laake,et al.  Recommended confidence intervals for two independent binomial proportions , 2015, Statistical methods in medical research.

[32]  Z. Anusz [Statistics in epidemiology]. , 1974, Pielegniarka i polozna.

[33]  Jens Ledet Jensen,et al.  Is the 'improved likelihood ratio statistic' really improved in the discrete case? , 1989 .

[34]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[35]  G. Rodger,et al.  Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison , 2020, The Lancet Infectious Diseases.

[36]  E. Mammen The Bootstrap and Edgeworth Expansion , 1997 .

[37]  R. Berger,et al.  P Values Maximized Over a Confidence Set for the Nuisance Parameter , 1994 .

[38]  S. T. Bennett,et al.  Estimating COVID-19 Antibody Seroprevalence in Santa Clara County, California. A re-analysis of Bendavid et al. , 2020, medRxiv.

[39]  E. S. Pearson,et al.  THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .

[40]  James R. Carpenter,et al.  Test inversion bootstrap confidence intervals , 1999 .

[41]  Devy M. Emperador,et al.  Antibody tests for identification of current and past infection with SARS‐CoV‐2 , 2020, The Cochrane database of systematic reviews.

[42]  O. E. Barndorff-Nielsen,et al.  Infereni on full or partial parameters based on the standardized signed log likelihood ratio , 1986 .

[43]  Judea Pearl,et al.  Probabilities Of Causation: Three Counterfactual Interpretations And Their Identification , 1999, Synthese.

[44]  Panos Toulis Estimation of Covid-19 prevalence from serology tests: A partial identification approach , 2020, Journal of Econometrics.

[45]  D. Lawley A GENERAL METHOD FOR APPROXIMATING TO THE DISTRIBUTION OF LIKELIHOOD RATIO CRITERIA , 1956 .

[46]  R. Peeling,et al.  Serology testing in the COVID-19 pandemic response , 2020, The Lancet Infectious Diseases.

[47]  Joseph P. Romano,et al.  Nonparametric confidence limits by resampling methods and least favorable families , 1990 .

[48]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[49]  Joseph P. Romano,et al.  A Practical Two-Step Method for Testing Moment Inequalities , 2014 .

[50]  Paul R. Rosenbaum,et al.  Effects attributable to treatment: Inference in experiments and observational studies with a discrete pivot , 2001 .