Polynomial and Abstract Subrecursive Classes
暂无分享,去创建一个
[1] H. R. Strong. Algebraically generalized recursive function theory , 1968 .
[2] Juris Hartmanis,et al. An Overview of the Theory of Computational Complexity , 1971, JACM.
[3] Michael Machtey. On the Density of Honest Subrecursive Classes , 1975, J. Comput. Syst. Sci..
[4] Robert L. Constable,et al. Type two computational complexity , 1973, STOC.
[5] Kurt Mehlhorn. On the Size of Sets of Computable Functions , 1973, SWAT.
[6] Allan Borodin,et al. Subrecursive Programming Languages, Part I: efficiency and program structure , 1972, JACM.
[7] Paul Axt,et al. On a subrecursive hierarchy and primitive recursive degrees , 1959 .
[8] Michael Machtey,et al. Augmented Loop Languages and Classes of Computables Functions , 1972, J. Comput. Syst. Sci..
[9] Kurt Mehlhorn. The "Almost All" Theory of Subrecursive Degrees is Decidable , 1974, ICALP.
[10] A. Grzegorczyk. Some classes of recursive functions , 1964 .
[11] Harry B. Hunt,et al. On the time and tape complexity of languages I , 1973, STOC.
[12] Emil L. Post. Recursively enumerable sets of positive integers and their decision problems , 1944 .
[13] Dennis M. Ritchie,et al. A Classification of the Recursive Functions , 1972 .
[14] Juris Hartmanis. On the Problem of Finding Natural Computational Complexity Measures , 1973, MFCS.
[15] Manuel Blum,et al. A Machine-Independent Theory of the Complexity of Recursive Functions , 1967, JACM.
[16] Sanat K. Basu. On classes of computable functions , 1969, STOC '69.
[17] Hartley Rogers,et al. Gödel numberings of partial recursive functions , 1958, Journal of Symbolic Logic.
[18] Robert W. Ritchie,et al. CLASSES OF PREDICTABLY COMPUTABLE FUNCTIONS , 1963 .
[19] Eric G. Wagner. Uniformly reflexive structures: An axiomatic approach to computability , 1969, Inf. Sci..
[20] Jeffrey D. Ullman,et al. Formal languages and their relation to automata , 1969, Addison-Wesley series in computer science and information processing.
[21] Robert Moll. Complexity Classes of Recursive Functions , 1973 .
[22] Michael Machtey. Minimal Pairs of Polynomial Degrees with Subexponential Complexity , 1976, Theor. Comput. Sci..
[23] Richard E. Ladner,et al. On the Structure of Polynomial Time Reducibility , 1975, JACM.
[24] Albert R. Meyer,et al. Word problems requiring exponential time(Preliminary Report) , 1973, STOC.
[25] Michael Machtey. The Honest Subrecursive Classes Are a Lattice , 1974, Inf. Control..
[26] Michael Machtey. Helping and the Meet of Pairs of Honest Subrecursive Classes , 1975, Inf. Control..
[27] J. Hartmanis,et al. On the Computational Complexity of Algorithms , 1965 .
[28] Yehoshua Bar-Hillel,et al. The Intrinsic Computational Difficulty of Functions , 1969 .
[29] Albert R. Meyer,et al. Classes of computable functions defined by bounds on computation: Preliminary Report , 1969, STOC.
[30] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[31] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[32] Albert R. Meyer,et al. WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .