Principles Governing the Operation of Synaptic Inhibition in Dendrites

Synaptic inhibition plays a key role in shaping the dynamics of neuronal networks and selecting cell assemblies. Typically, an inhibitory axon contacts a particular dendritic subdomain of its target neuron, where it often makes 10-20 synapses, sometimes on very distal branches. The functional implications of such a connectivity pattern are not well understood. Our experimentally based theoretical study highlights several new and counterintuitive principles for dendritic inhibition. We show that distal "off-path" rather than proximal "on-path" inhibition effectively dampens proximal excitable dendritic "hotspots," thus powerfully controlling the neuron's output. Additionally, with multiple synaptic contacts, inhibition operates globally, spreading centripetally hundreds of micrometers from the inhibitory synapses. Consequently, inhibition in regions lacking inhibitory synapses may exceed that at the synaptic sites themselves. These results offer new insights into the synergetic effect of dendritic inhibition in controlling dendritic excitability and plasticity and in dynamically molding functional dendritic subdomains and their output.

[1]  Idan Segev,et al.  Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: Interweaving in vitro and in vivo experimental observations , 2007, Proceedings of the National Academy of Sciences.

[2]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[3]  Bartlett W. Mel,et al.  Location-Dependent Effects of Inhibition on Local Spiking in Pyramidal Neuron Dendrites , 2012, PLoS Comput. Biol..

[4]  J Rinzel,et al.  Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. , 1973, Biophysical journal.

[5]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[6]  J. Deuchars,et al.  Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. , 1997, Cerebral cortex.

[7]  J. DeFelipe Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex , 1997, Journal of Chemical Neuroanatomy.

[8]  Christof Koch,et al.  The role of single neurons in information processing , 2000, Nature Neuroscience.

[9]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[10]  C. Koch,et al.  Visibility of synaptically induced conductance changes: theory and simulations of anatomically characterized cortical pyramidal cells , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Daniel Johnston,et al.  Voltage-gated ion channels in dendrites of hippocampal pyramidal neurons , 2006, Pflügers Archiv.

[12]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[13]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[15]  M. Larkum,et al.  Properties of Layer 6 Pyramidal Neuron Apical Dendrites , 2010, The Journal of Neuroscience.

[16]  Bartlett W. Mel,et al.  On the Fight Between Excitation and Inhibition: Location Is Everything , 2004, Science's STKE.

[17]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[18]  K. Krnjević,et al.  Cortical inhibition and γ-aminobutyric acid , 2004, Experimental Brain Research.

[19]  Terrence J. Sejnowski Consequences of Non-Uniform Active Currents in Dendrites , 2009, Front. Neurosci..

[20]  H. Markram,et al.  Morphological, Electrophysiological, and Synaptic Properties of Corticocallosal Pyramidal Cells in the Neonatal Rat Neocortex , 2006 .

[21]  J Rinzel,et al.  Transient response in a dendritic neuron model for current injected at one branch. , 1974, Biophysical journal.

[22]  T. Poggio,et al.  The synaptic veto mechanism: does it underlie direction and orientation selectivity in the visual cortex , 1985 .

[23]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[24]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[25]  R. Malenka The role of postsynaptic calcium in the induction of long-term potentiation , 2008, Molecular Neurobiology.

[26]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[27]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[28]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[29]  G. Stuart,et al.  Single Ih Channels in Pyramidal Neuron Dendrites: Properties, Distribution, and Impact on Action Potential Output , 2006, The Journal of Neuroscience.

[30]  D. Johnston,et al.  Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. , 1995, Journal of neurophysiology.

[31]  John A. Freeman,et al.  Dendritic Spikes and Their Inhibition in Alligator Purkinje Cells , 1968, Science.

[32]  Bartlett W. Mel,et al.  Dendrites: bug or feature? , 2003, Current Opinion in Neurobiology.

[33]  J. Macdonald,et al.  Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. , 2006, Critical reviews in neurobiology.

[34]  U. Eysel,et al.  Functional and Structural Topography of Horizontal Inhibitory Connections in Cat Visual Cortex , 1993, The European journal of neuroscience.

[35]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[36]  Bartlett W. Mel,et al.  A model for intradendritic computation of binocular disparity , 2000, Nature Neuroscience.

[37]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[38]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[39]  Daniel Johnston,et al.  Plasticity of dendritic function , 2005, Current Opinion in Neurobiology.

[40]  B. Sakmann,et al.  Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. , 2009, Cerebral cortex.

[41]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[42]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[43]  Thomas K. Berger,et al.  Frequency‐dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex , 2009, The Journal of physiology.

[44]  R. Lashgari,et al.  Effects of GABAergic inhibition on neocortical long-term potentiation in the chronically prepared rat , 2007, Neuroscience Letters.

[45]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Peter Jonas,et al.  Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons , 2012, Nature Neuroscience.

[47]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[48]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[49]  M. Häusser,et al.  The single dendritic branch as a fundamental functional unit in the nervous system , 2010, Current Opinion in Neurobiology.

[50]  M. Larkum,et al.  The Cellular Basis of GABAB-Mediated Interhemispheric Inhibition , 2012, Science.

[51]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[52]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[53]  Rodney J. Douglas,et al.  Inhibition in cortical circuits , 2009, Current Biology.

[54]  Henry Markram,et al.  Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties , 2011, PLoS Comput. Biol..

[55]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[56]  Javier DeFelipe,et al.  Counting Synapses Using FIB/SEM Microscopy: A True Revolution for Ultrastructural Volume Reconstruction , 2009, Front. Neuroanat..

[57]  Henry Markram,et al.  A Novel Multiple Objective Optimization Framework for Constraining Conductance-Based Neuron Models by Experimental Data , 2007, Front. Neurosci..

[58]  Guosong Liu,et al.  Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites , 2004, Nature Neuroscience.

[59]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[60]  Wilfrid Rall,et al.  Theoretical significance of dendritic trees for neuronal input-output relations , 1964 .

[61]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[62]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[63]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[64]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[65]  Thomas K. Berger,et al.  Brief Bursts Self-Inhibit and Correlate the Pyramidal Network , 2010, PLoS biology.

[66]  Stephen R. Williams,et al.  Spatial compartmentalization and functional impact of conductance in pyramidal neurons , 2004, Nature Neuroscience.

[67]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[68]  Christopher I. Moore,et al.  Computational Modeling of Distinct Neocortical Oscillations Driven by Cell-Type Selective Optogenetic Drive: Separable Resonant Circuits Controlled by Low-Threshold Spiking and Fast-Spiking Interneurons , 2010, Front. Hum. Neurosci..

[69]  F. Bezanilla,et al.  Voltage-gated ion channels , 2005, IEEE Transactions on NanoBioscience.

[70]  Y. Frégnac,et al.  In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices , 2008, Journal of Neuroscience Methods.

[71]  H. Markram,et al.  Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. , 2002, Cerebral cortex.

[72]  R. Nicoll,et al.  NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms , 1993, Trends in Neurosciences.

[73]  Y. Dan,et al.  An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons , 2009, Proceedings of the National Academy of Sciences.

[74]  G. Elston,et al.  Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey , 1999, The Journal of comparative neurology.

[75]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[76]  Nathan R. Wilson,et al.  Response Features of Parvalbumin-Expressing Interneurons Suggest Precise Roles for Subtypes of Inhibition in Visual Cortex , 2010, Neuron.

[77]  R. Traub,et al.  A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. , 1991, Journal of neurophysiology.

[78]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[79]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[80]  Paul A. Rhodes,et al.  The Properties and Implications of NMDA Spikes in Neocortical Pyramidal Cells , 2006, The Journal of Neuroscience.

[81]  Matthew E. Larkum,et al.  Enhanced dendritic activity in awake rats , 2009, Proceedings of the National Academy of Sciences.

[82]  Wen-Liang L Zhou,et al.  The decade of the dendritic NMDA spike , 2010, Journal of neuroscience research.

[83]  Charles J. Wilson,et al.  GABAergic microcircuits in the neostriatum , 2004, Trends in Neurosciences.

[84]  T. Teyler Long-term potentiation and memory. , 1987, International journal of neurology.

[85]  Nelson Spruston,et al.  Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites , 2005, The Journal of physiology.