Optimal feedback control for character animation using an abstract model

Real-time adaptation of a motion capture sequence to virtual environments with physical perturbations requires robust control strategies. This paper describes an optimal feedback controller for motion tracking that allows for on-the-fly re-planning of long-term goals and adjustments in the final completion time. We first solve an offline optimal trajectory problem for an abstract dynamic model that captures the essential relation between contact forces and momenta. A feedback control policy is then derived and used to simulate the abstract model online. Simulation results become dynamic constraints for online reconstruction of full-body motion from a reference. We applied our controller to a wide range of motions including walking, long stepping, and a squat exercise. Results show that our controllers are robust to large perturbations and changes in the environment.

[1]  A. E. Bryson,et al.  A neighboring optimum feedback control scheme based on estimated time-to-go with application to re-entry flight paths , 1968 .

[2]  D. Jacobson,et al.  A discrete-time differential dynamic programming algorithm with application to optimal orbit transfer , 1970 .

[3]  David Q. Mayne,et al.  Differential dynamic programming , 1972, The Mathematical Gazette.

[4]  R. Blickhan The spring-mass model for running and hopping. , 1989, Journal of biomechanics.

[5]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[6]  R. McN. Alexander,et al.  Simple Models of Human Movement , 1995 .

[7]  Eugene Fiume,et al.  Limit cycle control and its application to the animation of balancing and walking , 1996, SIGGRAPH.

[8]  Michiel van de Panne,et al.  From Footprints to Animation , 1997, Comput. Graph. Forum.

[9]  Jessica K. Hodgins,et al.  Adapting simulated behaviors for new characters , 1997, SIGGRAPH.

[10]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[11]  Jessica K. Hodgins,et al.  Tracking and Modifying Upper-body Human Motion Data with Dynamic Simulation , 1999, Computer Animation and Simulation.

[12]  Nancy S. Pollard,et al.  Force-based motion editing for locomotion tasks , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[13]  Jessica K. Hodgins,et al.  Simulating leaping, tumbling, landing and balancing humans , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[14]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[15]  Michael Neff,et al.  Modeling tension and relaxation for computer animation , 2002, SCA '02.

[16]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[17]  Jessica K. Hodgins,et al.  Motion capture-driven simulations that hit and react , 2002, SCA '02.

[18]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[19]  Kazuhito Yokoi,et al.  Resolved momentum control: humanoid motion planning based on the linear and angular momentum , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[20]  Dinesh K. Pai,et al.  Motion perturbation based on simple neuromotor control models , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[21]  C. Karen Liu,et al.  Momentum-based parameterization of dynamic character motion , 2004, SCA '04.

[22]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[23]  Taku Komura,et al.  Animating reactive motions for biped locomotion , 2004, VRST '04.

[24]  Marko B. Popovic,et al.  Zero spin angular momentum control: definition and applicability , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[25]  Vinutha Kallem,et al.  Rate of change of angular momentum and balance maintenance of biped robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[26]  Andy Ruina,et al.  Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions , 2005, Exercise and sport sciences reviews.

[27]  Victor B. Zordan,et al.  Dynamic response for motion capture animation , 2005, SIGGRAPH '05.

[28]  Jovan Popovic,et al.  Interactive animation of dynamic manipulation , 2006, SCA '06.

[29]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[30]  Jovan Popovic,et al.  Multiobjective control with frictional contacts , 2007, SCA '07.

[31]  Kwang Won Sok,et al.  Simulating biped behaviors from human motion data , 2007, ACM Trans. Graph..

[32]  Petros Faloutsos,et al.  On the beat!: timing and tension for dynamic characters , 2007, SCA '07.

[33]  C. Karen Liu,et al.  Animating responsive characters with dynamic constraints in near-unactuated coordinates , 2008, ACM Trans. Graph..

[34]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[35]  Marko B. Popovic,et al.  Angular momentum in human walking , 2008, Journal of Experimental Biology.

[36]  Zoran Popovic,et al.  Optimal gait and form for animal locomotion , 2009, ACM Trans. Graph..

[37]  Katsu Yamane,et al.  Simultaneous tracking and balancing of humanoid robots for imitating human motion capture data , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  C. Karen Liu,et al.  Optimization-based interactive motion synthesis , 2009, ACM Trans. Graph..

[39]  Christopher G. Atkeson,et al.  Standing balance control using a trajectory library , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Victor B. Zordan,et al.  Momentum control for balance , 2009, ACM Trans. Graph..

[41]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[42]  Christopher G. Atkeson,et al.  Control of a walking biped using a combination of simple policies , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[43]  Jessica K. Hodgins,et al.  Simulating balance recovery responses to trips based on biomechanical principles , 2009, SCA '09.

[44]  Christopher G. Atkeson,et al.  Modeling and control of periodic humanoid balance using the Linear Biped Model , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[45]  Sung-Hee Lee,et al.  Practical Character Physics for Animators , 2011, IEEE Computer Graphics and Applications.