Object tracking via Dirichlet process-based appearance models

AbstractObject tracking is the process of locating objects of interest in video frames. Challenges still exist in handling appearance changes in object tracking for robotic vision. In this paper, we propose a novel Dirichlet process-based appearance model (DPAM) for tracking. By explicitly introducing a new model variable into the traditional Dirichlet process, we model the negative and positive target instances as the combination of multiple appearance models. Within each model, target instances are dynamically clustered based on their visual similarity. DPAM provides an infinite nonparametric mixture of distributions that can grow automatically with the complexity of the appearance data. In addition, prior off-line training or specifying the number of mixture components (clusters or parameters) is not required. We build a tracking system in which DPAM is applied to cluster negative and positive target samples and detect the new target location. Our experimental results on real-world videos show that our system achieves superior performance when compared with several state-of-the-art trackers.

[1]  Jingdong Wang,et al.  Online Robust Non-negative Dictionary Learning for Visual Tracking , 2013, 2013 IEEE International Conference on Computer Vision.

[2]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[3]  Dayanand N. Naik,et al.  A Kotz-Type Distribution for Multivariate Statistical Inference , 2006 .

[4]  Qixiang Ye,et al.  Combined feature evaluation for adaptive visual object tracking , 2011, Comput. Vis. Image Underst..

[5]  Alptekin Temizel,et al.  Person re-identification by combining features in a learning based framework , 2013, ICDP.

[6]  Gérard G. Medioni,et al.  Online Tracking and Reacquisition Using Co-trained Generative and Discriminative Trackers , 2008, ECCV.

[7]  M. A. Gómez–Villegas,et al.  A MATRIX VARIATE GENERALIZATION OF THE POWER EXPONENTIAL FAMILY OF DISTRIBUTIONS , 2002 .

[8]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Rynson W. H. Lau,et al.  Visual Tracking via Locality Sensitive Histograms , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Vincent Lepetit,et al.  Randomized trees for real-time keypoint recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Wenbin Li,et al.  Robust object tracking with occlusion handle , 2011, Neural Computing and Applications.

[12]  Junzhou Huang,et al.  Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization , 2010, ECCV.

[13]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[14]  Hanqing Lu,et al.  A robust boosting tracker with minimum error bound in a co-training framework , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[15]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[18]  Ang Li,et al.  Discriminative Nonorthogonal Binary Subspace Tracking , 2010, ECCV.

[19]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[20]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[22]  Thang Ba Co-training Framework of Generative and Discriminative Trackers with Partial Occlusion Handling , 2010 .

[23]  Ming-Hsuan Yang,et al.  Incremental Learning for Visual Tracking , 2004, NIPS.

[24]  Yasushi Yagi,et al.  Integrating Shape and Color Features for Adaptive Real-time Object Tracking , 2006, 2006 IEEE International Conference on Robotics and Biomimetics.

[25]  Yogendra Kumar Jain,et al.  Content- based Image Retrieval Approach using Three Features Color, Texture and Shape , 2014 .

[26]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[27]  Horst Bischof,et al.  PROST: Parallel robust online simple tracking , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  L. Gool,et al.  Color features for tracking non-rigid objects , 2003 .

[29]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  École d'été de probabilités de Saint-Flour,et al.  École d'été de probabilités de Saint-Flour XIII - 1983 , 1985 .

[31]  Björn Stenger,et al.  Online multiple classifier boosting for object tracking , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[32]  Vassilios Morellas,et al.  Dirichlet process mixture models on symmetric positive definite matrices for appearance clustering in video surveillance applications , 2011, CVPR 2011.

[33]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[34]  Serge J. Belongie,et al.  Tracking multiple mouse contours (without too many samples) , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[35]  Huchuan Lu,et al.  A co-training framework for visual tracking with multiple instance learning , 2011, Face and Gesture 2011.

[36]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[37]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[39]  Riwal Lefort,et al.  Weakly Supervised Classification of Objects in Images Using Soft Random Forests , 2010, ECCV.

[40]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[41]  Dayanand N. Naik,et al.  Multivariate Analysis of Variance Using a Kotz Type Distribution , 2008 .

[42]  James F. Bell,et al.  Multivariate Statistical Simulations. , 1988 .

[43]  Huiyu Zhou,et al.  Object tracking using SIFT features and mean shift , 2009, Comput. Vis. Image Underst..

[44]  Horst Bischof,et al.  Hough-based tracking of non-rigid objects , 2011, 2011 International Conference on Computer Vision.

[45]  Avinash C. Kak,et al.  Computer Vision and Pattern Recognition 2010 A Probabilistic Framework for Joint Segmentation and Tracking , 2022 .

[46]  Yi Yang,et al.  Harry Potter's Marauder's Map: Localizing and Tracking Multiple Persons-of-Interest by Nonnegative Discretization , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Chang-Su Kim,et al.  Visual Tracking Using Pertinent Patch Selection and Masking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[49]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  D. Aldous Exchangeability and related topics , 1985 .

[52]  Stanley T. Birchfield,et al.  Elliptical head tracking using intensity gradients and color histograms , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[53]  Andrew Blake,et al.  Sparse Bayesian learning for efficient visual tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Nanning Zheng,et al.  Constructing Adaptive Complex Cells for Robust Visual Tracking , 2013, 2013 IEEE International Conference on Computer Vision.

[55]  Gang Hua,et al.  Discriminative Tracking by Metric Learning , 2010, ECCV.

[56]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Vincent Lepetit,et al.  Keypoint recognition using randomized trees , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.