Tectonigral projections in the primate: a pathway for pre‐attentive sensory input to midbrain dopaminergic neurons

Much of the evidence linking the short‐latency phasic signaling of midbrain dopaminergic neurons with reward‐prediction errors used in learning and habit formation comes from recording the visual responses of monkey dopaminergic neurons. However, the information encoded by dopaminergic neuron activity is constrained by the qualities of the afferent visual signals made available to these cells. Recent evidence from rats and cats indicates the primary source of this visual input originates subcortically, via a direct tectonigral projection. The present anatomical study sought to establish whether a direct tectonigral projection is a significant feature of the primate brain. Injections of anterograde tracers into the superior colliculus of macaque monkeys labelled terminal arbors throughout the substantia nigra, with the densest terminations in the dorsal tier. Labelled boutons were found in close association (possibly indicative of synaptic contact) with ventral midbrain neurons staining positively for the dopaminergic marker tyrosine hydroxylase. Injections of retrograde tracer confined to the macaque substantia nigra retrogradely labelled small‐ to medium‐sized neurons in the intermediate and deep layers of the superior colliculus. Together, these data indicate that a direct tectonigral projection is also a feature of the monkey brain, and therefore likely to have been conserved throughout mammalian evolution. Insofar as the superior colliculus is configured to detect unpredicted, biologically salient, sensory events, it may be safer to regard the phasic responses of midbrain dopaminergic neurons as ‘sensory prediction errors’ rather than ‘reward prediction errors’, in which case dopamine‐based theories of reinforcement learning will require revision.

[1]  J. Rafols,et al.  Intermediate and deep layers of the macaque superior colliculus: A golgi study , 1990, The Journal of comparative neurology.

[2]  P. Dean,et al.  Event or emergency? Two response systems in the mammalian superior colliculus , 1989, Trends in Neurosciences.

[3]  S. Haber,et al.  Prefrontal Cortical Projections to the Midbrain in Primates: Evidence for a Sparse Connection , 2006, Neuropsychopharmacology.

[4]  P. Dean,et al.  Output pathways from the rat superior colliculus mediating approach and avoidance have different sensory properties , 2006, Experimental Brain Research.

[5]  S. Haber,et al.  The primate substantia nigra and VTA: integrative circuitry and function. , 1997, Critical reviews in neurobiology.

[6]  Samuel M. McClure,et al.  BOLD Responses Reflecting Dopaminergic Signals in the Human Ventral Tegmental Area , 2008, Science.

[7]  Joseph J Paton,et al.  Flexible Neural Representations of Value in the Primate Brain , 2007, Annals of the New York Academy of Sciences.

[8]  A K Moschovakis,et al.  Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. , 1988, Journal of neurophysiology.

[9]  B. Stein,et al.  Opposing basal ganglia processes shape midbrain visuomotor activity bilaterally , 2003, Nature.

[10]  O. Hikosaka,et al.  A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward mapping. , 2004, Journal of neurophysiology.

[11]  Boris S. Gutkin,et al.  Dopamine modulation in the basal ganglia locks the gate to working memory , 2006, Journal of Computational Neuroscience.

[12]  Ann M. Graybiel,et al.  Organization of the nigrotectal connection: an experimental tracer study in the cat , 1978, Brain Research.

[13]  J. Lipski,et al.  Substance P immunoreactive boutons form synapses with feline sympathetic preganglionic neurons , 1992, The Journal of comparative neurology.

[14]  J. K. Harting,et al.  Nigrotectal projections in the primate Galago crassicaudatus , 2004, Experimental Brain Research.

[15]  P. Shepard,et al.  Afferent modulation of dopamine neuron firing patterns , 1999, Current Opinion in Neurobiology.

[16]  Tomoyuki Furuyashiki,et al.  Neural Encoding in the Orbitofrontal Cortex Related to Goal‐Directed Behavior , 2007, Annals of the New York Academy of Sciences.

[17]  P. May,et al.  The laminar distribution of macaque tectobulbar and tectospinal neurons , 1992, Visual Neuroscience.

[18]  W. Schultz,et al.  Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons , 2003, Science.

[19]  S. Haber,et al.  Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: Comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity , 1995, The Journal of comparative neurology.

[20]  D. Sparks,et al.  Sensorimotor integration in the primate superior colliculus. I. Motor convergence. , 1987, Journal of neurophysiology.

[21]  P. Strick,et al.  The temporal lobe is a target of output from the basal ganglia. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Graybiel,et al.  The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. , 1999, Brain : a journal of neurology.

[23]  D L Sparks,et al.  Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. , 1986, Physiological reviews.

[24]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[25]  P. May The mammalian superior colliculus: laminar structure and connections. , 2006, Progress in brain research.

[26]  J. Tepper,et al.  Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABAA receptors in vivo , 1999, Neuroscience.

[27]  Sidney S. Simon,et al.  Merging of the Senses , 2008, Front. Neurosci..

[28]  J. Bolam,et al.  Uniform Inhibition of Dopamine Neurons in the Ventral Tegmental Area by Aversive Stimuli , 2004, Science.

[29]  W. Schultz,et al.  Coding of Predicted Reward Omission by Dopamine Neurons in a Conditioned Inhibition Paradigm , 2003, The Journal of Neuroscience.

[30]  S. Haber,et al.  The organization of midbrain projections to the striatum in the primate: Sensorimotor-related striatum versus ventral striatum , 1994, Neuroscience.

[31]  M. Norita Neurons and synaptic patterns in the deep layers of the superior colliculus of the cat. A Golgi and electron microscopic study , 1980, The Journal of comparative neurology.

[32]  D. Munoz,et al.  Presaccadic burst discharges of tecto-reticulo-spinal neurons in the alert head-free and -fixed cat , 1986, Brain Research.

[33]  H. Seo,et al.  Mechanisms of Reinforcement Learning and Decision Making in the Primate Dorsolateral Prefrontal Cortex , 2007, Annals of the New York Academy of Sciences.

[34]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. , 1972, Journal of neurophysiology.

[35]  J. E. Albano,et al.  Visual-motor function of the primate superior colliculus. , 1980, Annual review of neuroscience.

[36]  E. Vaadia,et al.  Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons , 2004, Neuron.

[37]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[38]  O. Hikosaka,et al.  Role of the basal ganglia in the control of purposive saccadic eye movements. , 2000, Physiological reviews.

[39]  S. Haber,et al.  Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates , 2001, Neuroscience.

[40]  S. N. Haber,et al.  The organization of midbrain projections to the ventral striatum in the primate , 1994, Neuroscience.

[41]  W. C. Hall,et al.  Interlaminar connections of the superior colliculus in the tree shrew. III: The optic layer , 1997, Visual Neuroscience.

[42]  E. Rolls,et al.  In linking affect to action: critical contributions of the orbitofrontal cortex , 2007 .

[43]  Peter Redgrave,et al.  A direct projection from superior colliculus to substantia nigra for detecting salient visual events , 2003, Nature Neuroscience.

[44]  W. Schultz Behavioral theories and the neurophysiology of reward. , 2006, Annual review of psychology.

[45]  T. Isa Intrinsic processing in the mammalian superior colliculus , 2002, Current Opinion in Neurobiology.

[46]  P. Glimcher,et al.  Statistics of midbrain dopamine neuron spike trains in the awake primate. , 2007, Journal of neurophysiology.

[47]  Jun Tanji,et al.  The relationship between MI and SMA afferents and cerebellar and pallidal efferents in the macaque monkey , 2002, Somatosensory & motor research.

[48]  P. Redgrave,et al.  Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat , 2006, Neuroscience.

[49]  W. C. Hall,et al.  The nigral projection to predorsal bundle cells in the superior colliculus of the rat , 1992, The Journal of comparative neurology.

[50]  J. Horvitz,et al.  Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat , 1997, Brain Research.

[51]  A. Cooper,et al.  Predictive Reward Signal of Dopamine Neurons , 2011 .

[52]  J. Mayhew,et al.  How Visual Stimuli Activate Dopaminergic Neurons at Short Latency , 2005, Science.

[53]  A. Grace,et al.  Regulation of firing of dopaminergic neurons and control of goal-directed behaviors , 2007, Trends in Neurosciences.

[54]  Neural networks: neural systems V: basal ganglia. , 2001, The American journal of psychiatry.

[55]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[56]  W. C. Hall,et al.  Relationships between the nigrotectal pathway and the cells of origin of the predorsal bundle , 1984, The Journal of comparative neurology.

[57]  C. Padoa-Schioppa,et al.  The representation of economic value in the orbitofrontal cortex is invariant for changes of menu , 2008, Nature Neuroscience.

[58]  P. Redgrave,et al.  A direct projection from superior colliculus to substantia nigra pars compacta in the cat , 2006, Neuroscience.

[59]  David L. Sparks,et al.  Sensori-motor integration in the primate superior colliculus , 1991 .

[60]  W. Schultz,et al.  Adaptive Coding of Reward Value by Dopamine Neurons , 2005, Science.

[61]  P Redgrave,et al.  Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  Okihide Hikosaka,et al.  Reward-Dependent Gain and Bias of Visual Responses in Primate Superior Colliculus , 2003, Neuron.

[63]  Philippe Mailly,et al.  Three-Dimensional Organization of the Recurrent Axon Collateral Network of the Substantia Nigra Pars Reticulata Neurons in the Rat , 2003, The Journal of Neuroscience.

[64]  S. Sesack,et al.  Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia , 2002, Physiology & Behavior.

[65]  S. Haber,et al.  The central nucleus of the amygdala projection to dopamine subpopulations in primates , 2000, Neuroscience.

[66]  P. Redgrave,et al.  Is the short-latency dopamine response too short to signal reward error? , 1999, Trends in Neurosciences.

[67]  P. Dayan,et al.  Reward, Motivation, and Reinforcement Learning , 2002, Neuron.

[68]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[69]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[70]  J. Deniau,et al.  Disinhibition as a basic process in the expression of striatal functions , 1990, Trends in Neurosciences.

[71]  S. Thorpe,et al.  Seeking Categories in the Brain , 2001, Science.

[72]  Jonathan D. Cohen,et al.  Computational roles for dopamine in behavioural control , 2004, Nature.

[73]  W. Pan,et al.  Pedunculopontine Tegmental Nucleus Controls Conditioned Responses of Midbrain Dopamine Neurons in Behaving Rats , 2005, The Journal of Neuroscience.

[74]  B. Everitt,et al.  Cocaine Seeking Habits Depend upon Dopamine-Dependent Serial Connectivity Linking the Ventral with the Dorsal Striatum , 2008, Neuron.

[75]  T. Stanford,et al.  Multisensory integration: current issues from the perspective of the single neuron , 2008, Nature Reviews Neuroscience.

[76]  W. Schultz Getting Formal with Dopamine and Reward , 2002, Neuron.

[77]  J. Deniau,et al.  Morphology of the substantia nigra pars reticulata projection neurons intracellularly labeled with HRP , 1982, The Journal of comparative neurology.

[78]  J. Deniau,et al.  The nigro-tectal pathway. An electrophysiological reinvestigation in the rat , 1981, Brain Research.

[79]  W. C. Hall,et al.  Interlaminar connections of the superior colliculus in the tree shrew. I. The superficial gray layer , 1993, The Journal of comparative neurology.

[80]  P. Redgrave,et al.  What is reinforced by phasic dopamine signals? , 2008, Brain Research Reviews.