How cortical neurons help us see: visual recognition in the human brain.

Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex.

[1]  J. Mattingley,et al.  Parietal neglect and visual awareness , 1998, Nature Neuroscience.

[2]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[3]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[4]  S. Zeki,et al.  Cerebral akinetopsia (visual motion blindness). A review. , 1991, Brain : a journal of neurology.

[5]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[7]  G. Riddoch DISSOCIATION OF VISUAL PERCEPTIONS DUE TO OCCIPITAL INJURIES, WITH ESPECIAL REFERENCE TO APPRECIATION OF MOVEMENT , 1917 .

[8]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[9]  Dominique Cardebat,et al.  Seeing, since childhood, without ventral stream: a behavioural study. , 2002, Brain : a journal of neurology.

[10]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[11]  Rolls Et Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. , 1984 .

[12]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[13]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[14]  N. Logothetis The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal , 2003, The Journal of Neuroscience.

[15]  M. Mishkin A memory system in the monkey. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  S. Vecera,et al.  Psychoanatomical substrates of Bálint's syndrome , 2002, Journal of neurology, neurosurgery, and psychiatry.

[17]  N Kanwisher,et al.  THE COGNITIVE NEUROSCIENCE OF FACE PROCESSING: AN INTRODUCTION , 2000, Cognitive neuropsychology.

[18]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[19]  G. Kreiman,et al.  On the Neuronal Activity in the Human Brain during Visual Recognition, Imagery and Binocular Rivalry , 2002 .

[20]  D. B. Bender,et al.  Visual Receptive Fields of Neurons in Inferotemporal Cortex of the Monkey , 1969, Science.

[21]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S. Zeki,et al.  A century of cerebral achromatopsia. , 1990, Brain : a journal of neurology.

[23]  C. Connor,et al.  Population coding of shape in area V4 , 2002, Nature Neuroscience.

[24]  S. Thorpe,et al.  Surfing a spike wave down the ventral stream , 2002, Vision Research.

[25]  G W Humphreys,et al.  Object recognition: The man who mistook his dog for a cat , 1996, Current Biology.

[26]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[27]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[28]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[29]  Y. Miyashita,et al.  Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita , 1988, Nature.

[30]  N. Mai,et al.  Selective disturbance of movement vision after bilateral brain damage. , 1983, Brain : a journal of neurology.

[31]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[33]  J. Maunsell,et al.  Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. , 2003, Journal of neurophysiology.

[34]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[35]  M. Potter,et al.  Recognition memory for a rapid sequence of pictures. , 1969, Journal of experimental psychology.

[36]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[37]  M. Seghier,et al.  A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. , 2003, Brain : a journal of neurology.

[38]  Nikos Logothetis,et al.  Can current fMRI techniques reveal the micro-architecture of cortex? , 2000, Nature Neuroscience.

[39]  T. Shallice,et al.  Category specific semantic impairments , 1984 .

[40]  B. Wandell Foundations of vision , 1995 .

[41]  K. Nakayama,et al.  RESPONSE PROPERTIES OF THE HUMAN FUSIFORM FACE AREA , 2000, Cognitive neuropsychology.

[42]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[43]  G. Dutton Impairment of vision in children due to damage to the brain: a practical approach , 2008 .

[44]  G. Orban,et al.  Cue-invariant shape selectivity of macaque inferior temporal neurons. , 1993, Science.

[45]  J H Maunsell,et al.  The Brain's Visual World: Representation of Visual Targets in Cerebral Cortex , 1995, Science.

[46]  A. Hellström,et al.  Association between visual impairment and functional and morphological cerebral abnormalities in full-term children. , 2001, Acta ophthalmologica Scandinavica.

[47]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[48]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[49]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[50]  Edward M. Callaway,et al.  Feedforward, feedback and inhibitory connections in primate visual cortex , 2004, Neural Networks.

[51]  C. Koch,et al.  Category-specific visual responses of single neurons in the human medial temporal lobe , 2000, Nature Neuroscience.

[52]  N. Logothetis,et al.  Psychophysical and physiological evidence for viewer-centered object representations in the primate. , 1995, Cerebral cortex.

[53]  D. Perrett,et al.  Recent developments in the neuropsychology and physiology of face processing. , 1993, Bailliere's clinical neurology.

[54]  D. Leopold Neuroscience: Pre-emptive blood flow , 2009, Nature.

[55]  E. Renzi,et al.  Disorders of Visual Recognition , 2000 .

[56]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[57]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[58]  Yevgeniy B. Sirotin,et al.  Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. , 2009, Nature.

[59]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[60]  A. Oliva,et al.  Flexible, Diagnosticity-Driven, Rather Than Fixed, Perceptually Determined Scale Selection in Scene and Face Recognition , 1997, Perception.

[61]  K. Pribram,et al.  Visual discrimination performance following partial ablations of the temporal lobe. I. Ventral vs. lateral. , 1954, Journal of comparative and physiological psychology.

[62]  M. Mishkin Visual discrimination performance following partial ablations of the temporal lobe. II. Ventral surface vs. hippocampus. , 1954, Journal of comparative and physiological psychology.

[63]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[64]  G. Kreiman,et al.  Timing, Timing, Timing: Fast Decoding of Object Information from Intracranial Field Potentials in Human Visual Cortex , 2009, Neuron.

[65]  Christopher J. Aura,et al.  Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey , 2008, Nature Neuroscience.

[66]  P. Carpenter,et al.  Frames of reference for allocating attention to space: Evidence from the neglect syndrome , 1990, Neuropsychologia.

[67]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[68]  P. Dean Effects of inferotemporal lesions on the behavior of monkeys. , 1976, Psychological bulletin.

[69]  Rosaleen A. McCarthy,et al.  Multiple meaning systems in the brain: A case for visual semantics , 1994, Neuropsychologia.

[70]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[71]  C. Gross,et al.  Stimulus equivalence after inferior temporal lesions in monkeys. , 1984, Behavioral neuroscience.

[72]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[73]  T Landis,et al.  Direction‐specific motion blindness induced by focal stimulation of human extrastriate cortex , 2002, The European journal of neuroscience.

[74]  K. Rayner Eye movements in reading and information processing: 20 years of research. , 1998, Psychological bulletin.

[75]  A. Engel,et al.  Invasive recordings from the human brain: clinical insights and beyond , 2005, Nature Reviews Neuroscience.

[76]  M. Wong-Riley,et al.  Primate Visual Cortex , 1994 .

[77]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[78]  J. Hegdé,et al.  A comparative study of shape representation in macaque visual areas v2 and v4. , 2007, Cerebral cortex.

[79]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[80]  I. Fried,et al.  Coupling Between Neuronal Firing, Field Potentials, and fMRI in Human Auditory Cortex , 2005, Science.

[81]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[82]  H. Eichenbaum A cortical–hippocampal system for declarative memory , 2000, Nature Reviews Neuroscience.

[83]  H. Klüver,et al.  PRELIMINARY ANALYSIS OF FUNCTIONS OF THE TEMPORAL LOBES IN MONKEYS , 1939 .

[84]  Martin Arguin,et al.  Semantic and Visual Determinants of Face Recognition in a Prosopagnosic Patient , 1998, Journal of Cognitive Neuroscience.

[85]  Anitha Pasupathy,et al.  Transformation of shape information in the ventral pathway , 2007, Current Opinion in Neurobiology.

[86]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[87]  Bruno A. Olshausen,et al.  Book Review , 2003, Journal of Cognitive Neuroscience.

[88]  Leslie G. Ungerleider,et al.  Distributed Neural Systems for the Generation of Visual Images , 2000, Neuron.

[89]  M. Tarr,et al.  Can Face Recognition Really be Dissociated from Object Recognition? , 1999, Journal of Cognitive Neuroscience.

[90]  M. Posner,et al.  Pathologies of brain attentional networks , 2000, Neuroscience & Biobehavioral Reviews.

[91]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[92]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[93]  G. Holmes DISTURBANCES OF VISUAL ORIENTATION , 1918, The British journal of ophthalmology.

[94]  S. Zeki,et al.  The Riddoch syndrome: insights into the neurobiology of conscious vision. , 1998, Brain : a journal of neurology.

[95]  G N Dutton,et al.  Cognitive vision, its disorders and differential diagnosis in adults and children: knowing where and what things are , 2003, Eye.

[96]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[97]  G. Kreiman,et al.  Single unit approaches to human vision and memory , 2007, Current Opinion in Neurobiology.

[98]  Guido Gainotti,et al.  Cognitive and anatomical locus of lesion in a patient with a category-specific semantic impairment for living beings , 1996 .

[99]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[100]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[101]  Leslie G. Ungerleider,et al.  Dissociation of object and spatial visual processing pathways in human extrastriate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[102]  R. Desimone,et al.  Shape recognition and inferior temporal neurons. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[103]  R. Clark,et al.  The medial temporal lobe. , 2004, Annual review of neuroscience.

[104]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[105]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[106]  D. Heeger,et al.  A Hierarchy of Temporal Receptive Windows in Human Cortex , 2008, The Journal of Neuroscience.

[107]  C. Gross,et al.  How inferior temporal cortex became a visual area. , 1994, Cerebral cortex.

[108]  Alexandra J. Golby,et al.  Robust Selectivity to Two-Object Images in Human Visual Cortex , 2010, Current Biology.

[109]  Laurel J. Buxbaum,et al.  Impaired face and word recognition without object agnosiafn2 fn2 Supported by nih Grant R29DC03179-01 to the first author. , 1998, Neuropsychologia.

[110]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[111]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[112]  J. Hegdé,et al.  Strategies of shape representation in macaque visual area V2 , 2003, Visual Neuroscience.

[113]  Bernard Giusiano,et al.  Category specificity in object agnosia: preservation of sensorimotor experiences related to objects , 1998, Neuropsychologia.

[114]  Denis G. Pelli,et al.  Human Perception of Objects: Early Visual Processing of Spatial Form Defined by Luminance, Color, Texture, Motion, and Binocular Disparity , 2001 .

[115]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. , 1990, Journal of neurophysiology.

[116]  A. Damasio,et al.  Face agnosia and the neural substrates of memory. , 1990, Annual review of neuroscience.

[117]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[118]  E. Rolls Neural organization of higher visual functions , 1991, Current Opinion in Neurobiology.

[119]  Fabrizio Berizzi,et al.  A new fast method for the reconstruction of 2-D microwave images of rotating objects , 1999, IEEE Trans. Image Process..

[120]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[121]  Scott L. Brincat,et al.  Dynamic Shape Synthesis in Posterior Inferotemporal Cortex , 2006, Neuron.

[122]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[123]  R. Desimone Face-Selective Cells in the Temporal Cortex of Monkeys , 1991, Journal of Cognitive Neuroscience.

[124]  Dave Regan,et al.  Human perception of objects: early visual processing of spatial form defined by luminance , 2000 .

[125]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[126]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[127]  Kenneth F. Valyear,et al.  The fusiform face area is not sufficient for face recognition: Evidence from a patient with dense prosopagnosia and no occipital face area , 2006, Neuropsychologia.

[128]  E. Bisiach,et al.  Unilateral Neglect of Representational Space , 1978, Cortex.

[129]  O. Sacks,et al.  The Man Who Mistook His Wife for a Hat and Other Clinical Tales , 1985 .

[130]  E. Warrington,et al.  Categories of knowledge. Further fractionations and an attempted integration. , 1987, Brain : a journal of neurology.

[131]  Thomas Serre,et al.  A quantitative theory of immediate visual recognition. , 2007, Progress in brain research.

[132]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[133]  Johannes Rüter,et al.  The Anatomy of Object Recognition—Visual Form Agnosia Caused by Medial Occipitotemporal Stroke , 2009, The Journal of Neuroscience.

[134]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.