Diverse Expected Gradient Active Learning for Relative Attributes

The use of relative attributes for semantic understanding of images and videos is a promising way to improve communication between humans and machines. However, it is extremely labor- and time-consuming to define multiple attributes for each instance in large amount of data. One option is to incorporate active learning, so that the informative samples can be actively discovered and then labeled. However, most existing active-learning methods select samples one at a time (serial mode), and may therefore lose efficiency when learning multiple attributes. In this paper, we propose a batch-mode active-learning method, called diverse expected gradient active learning. This method integrates an informativeness analysis and a diversity analysis to form a diverse batch of queries. Specifically, the informativeness analysis employs the expected pairwise gradient length as a measure of informativeness, while the diversity analysis forces a constraint on the proposed diverse gradient angle. Since simultaneous optimization of these two parts is intractable, we utilize a two-step procedure to obtain the diverse batch of queries. A heuristic method is also introduced to suppress imbalanced multiclass distributions. Empirical evaluations of three different databases demonstrate the effectiveness and efficiency of the proposed approach.

[1]  Dacheng Tao,et al.  A Survey on Multi-view Learning , 2013, ArXiv.

[2]  Arijit Biswas,et al.  Simultaneous Active Learning of Classifiers & Attributes via Relative Feedback , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Shree K. Nayar,et al.  Attribute and simile classifiers for face verification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[4]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[5]  Alexei A. Efros,et al.  Unsupervised discovery of visual object class hierarchies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Yang Yang,et al.  Learning semantic visual vocabularies using diffusion distance , 2009, CVPR.

[7]  Shaogang Gong,et al.  Attribute Learning for Understanding Unstructured Social Activity , 2012, ECCV.

[8]  Silvio Savarese,et al.  Recognizing human actions by attributes , 2011, CVPR 2011.

[9]  Alexander C. Berg,et al.  Automatic Attribute Discovery and Characterization from Noisy Web Data , 2010, ECCV.

[10]  Cordelia Schmid,et al.  Combining attributes and Fisher vectors for efficient image retrieval , 2011, CVPR 2011.

[11]  Huidong Jin,et al.  Sequential latent Dirichlet allocation , 2012, Knowledge and Information Systems.

[12]  Wen Gao,et al.  Towards semantic embedding in visual vocabulary , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Devi Parikh,et al.  Attributes for Classifier Feedback , 2012, ECCV.

[14]  Mark Craven,et al.  Multiple-Instance Active Learning , 2007, NIPS.

[15]  Gang Yu,et al.  Action Search by Example Using Randomized Visual Vocabularies , 2013, IEEE Transactions on Image Processing.

[16]  David J. Crisp,et al.  Uniqueness of the SVM Solution , 1999, NIPS.

[17]  Jonghyun Choi,et al.  Adding Unlabeled Samples to Categories by Learned Attributes , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Tat-Seng Chua,et al.  Semantic-Gap-Oriented Active Learning for Multilabel Image Annotation , 2012, IEEE Transactions on Image Processing.

[20]  Nicu Sebe,et al.  The State of the Art in Image and Video Retrieval , 2003, CIVR.

[21]  Alexei A. Efros,et al.  Discovering objects and their location in images , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[22]  Daphne Koller,et al.  Support Vector Machine Active Learning with Applications to Text Classification , 2000, J. Mach. Learn. Res..

[23]  Frédéric Jurie,et al.  Improving Image Classification Using Semantic Attributes , 2012, International Journal of Computer Vision.

[24]  Xiao-Yong Wei,et al.  Coaching the Exploration and Exploitation in Active Learning for Interactive Video Retrieval , 2013, IEEE Transactions on Image Processing.

[25]  SchieleBernt,et al.  Semantic Modeling of Natural Scenes for Content-Based Image Retrieval , 2007 .

[26]  Weifeng Liu,et al.  Multiview Hessian Regularization for Image Annotation , 2013, IEEE Transactions on Image Processing.

[27]  Xin Yao,et al.  Multiclass Imbalance Problems: Analysis and Potential Solutions , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  Christoph H. Lampert,et al.  Attribute-Based Classification for Zero-Shot Visual Object Categorization , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Lorenzo Bruzzone,et al.  Batch-Mode Active-Learning Methods for the Interactive Classification of Remote Sensing Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[30]  TaoDacheng,et al.  Large-Margin Multi-ViewInformation Bottleneck , 2014 .

[31]  Dacheng Tao,et al.  Large-Margin Multi-ViewInformation Bottleneck , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Nathalie Japkowicz,et al.  The class imbalance problem: A systematic study , 2002, Intell. Data Anal..

[33]  Stefan Wrobel,et al.  Active Hidden Markov Models for Information Extraction , 2001, IDA.

[34]  Klaus Brinker,et al.  Incorporating Diversity in Active Learning with Support Vector Machines , 2003, ICML.

[35]  Mubarak Shah,et al.  Learning semantic visual vocabularies using diffusion distance , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Chun Chen,et al.  A Unified Feature and Instance Selection Framework Using Optimum Experimental Design , 2012, IEEE Transactions on Image Processing.

[37]  Geoffrey E. Hinton,et al.  Zero-shot Learning with Semantic Output Codes , 2009, NIPS.

[38]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[39]  Andrew Zisserman,et al.  Scene Classification Via pLSA , 2006, ECCV.

[40]  Olivier Chapelle,et al.  Training a Support Vector Machine in the Primal , 2007, Neural Computation.

[41]  Yong Luo,et al.  Manifold Regularized Multitask Learning for Semi-Supervised Multilabel Image Classification , 2013, IEEE Transactions on Image Processing.

[42]  Fakhri Karray,et al.  An efficient concept-based retrieval model for enhancing text retrieval quality , 2013, ICUIMC '13.

[43]  Yong Luo,et al.  Multiview Vector-Valued Manifold Regularization for Multilabel Image Classification , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[44]  Xiaofeng Wang,et al.  Semantic trajectory-based event detection and event pattern mining , 2013, Knowledge and Information Systems.

[45]  Kristen Grauman,et al.  Relative attributes , 2011, 2011 International Conference on Computer Vision.

[46]  Tae-Kyun Kim,et al.  Learning Motion Categories using both Semantic and Structural Information , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[48]  Ali Farhadi,et al.  Describing objects by their attributes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[50]  Bin Li,et al.  A survey on instance selection for active learning , 2012, Knowledge and Information Systems.

[51]  Qing He,et al.  Effective semi-supervised document clustering via active learning with instance-level constraints , 2011, Knowledge and Information Systems.

[52]  Shih-Fu Chang,et al.  Designing Category-Level Attributes for Discriminative Visual Recognition , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[54]  Xuelong Li,et al.  Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Bernt Schiele,et al.  International Journal of Computer Vision manuscript No. (will be inserted by the editor) Semantic Modeling of Natural Scenes for Content-Based Image Retrieval , 2022 .

[56]  Jaime G. Carbonell,et al.  Optimizing estimated loss reduction for active sampling in rank learning , 2008, ICML '08.

[57]  William J. Emery,et al.  Active Learning Methods for Remote Sensing Image Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.