Efficient planning with the Bayes tree for active SLAM

This paper reports on an active simultaneous localization and mapping (SLAM) framework that leverages the Bayes tree data structure for efficient planning. Evaluating information-theoretic objective functions in the context of active SLAM is a very expensive process that requires significant computational overhead. The contributions of this work involve exploiting the structure of the planning problem integrated with SLAM via the Bayes tree graphical model. Specifically, we propose a constrained variable ordering and subtree caching scheme that reduce computational complexity by eliminating redundant computations between candidate actions that are similar. We also propose an active SLAM framework that utilizes these concepts, and demonstrate the benefits of the approach with an underwater robot performing visual SLAM in a hybrid simulation environment.

[1]  John J. Leonard,et al.  Consistent sparsification for graph optimization , 2013, 2013 European Conference on Mobile Robots.

[2]  Ryan M. Eustice,et al.  Belief space planning for underwater cooperative localization , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[3]  Paul Ozog,et al.  Long‐term Mapping Techniques for Ship Hull Inspection and Surveillance using an Autonomous Underwater Vehicle , 2016, J. Field Robotics.

[4]  Timothy A. Davis,et al.  A column approximate minimum degree ordering algorithm , 2000, TOMS.

[5]  Franz S. Hover,et al.  Advanced perception, navigation and planning for autonomous in-water ship hull inspection , 2012, Int. J. Robotics Res..

[6]  Ryan M. Eustice,et al.  Active visual SLAM for robotic area coverage: Theory and experiment , 2015, Int. J. Robotics Res..

[7]  Wolfram Burgard,et al.  Information Gain-based Exploration Using Rao-Blackwellized Particle Filters , 2005, Robotics: Science and Systems.

[8]  F. Dellaert Factor Graphs and GTSAM: A Hands-on Introduction , 2012 .

[9]  Didier Devaurs,et al.  Efficient Sampling-Based Approaches to Optimal Path Planning in Complex Cost Spaces , 2014, WAFR.

[10]  Jaime Valls Miró,et al.  Active Pose SLAM , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Pavel Zemcík,et al.  Incremental Block Cholesky Factorization for Nonlinear Least Squares in Robotics , 2013, Robotics: Science and Systems.

[12]  Ryan M. Eustice,et al.  Opportunistic sampling-based planning for active visual SLAM , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Michael Kaess,et al.  Generic Node Removal for Factor-Graph SLAM , 2014, IEEE Transactions on Robotics.

[14]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[15]  Frank Dellaert,et al.  Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments , 2015, Int. J. Robotics Res..

[16]  Ryan M. Eustice,et al.  Real-Time Visual SLAM for Autonomous Underwater Hull Inspection Using Visual Saliency , 2013, IEEE Transactions on Robotics.

[17]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[18]  Ron Alterovitz,et al.  Motion planning under uncertainty using iterative local optimization in belief space , 2012, Int. J. Robotics Res..

[19]  Hugh F. Durrant-Whyte,et al.  Conservative Sparsification for efficient and consistent approximate estimation , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Ryan M. Eustice,et al.  Risk aversion in belief-space planning under measurement acquisition uncertainty , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[21]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[22]  Juan Cort Sampling-Based Path Planning on Configuration-Space Costmaps , 2010 .

[23]  Edwin Olson,et al.  Variable reordering strategies for SLAM , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Pavel Zemcík,et al.  Fast covariance recovery in incremental nonlinear least square solvers , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[25]  Geoffrey A. Hollinger,et al.  Sampling-based robotic information gathering algorithms , 2014, Int. J. Robotics Res..

[26]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[27]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[28]  Vadim Indelman No Correlations Involved: Decision Making Under Uncertainty in a Conservative Sparse Information Space , 2016, IEEE Robotics and Automation Letters.