Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies

This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points.

[1]  Jeffrey S. Rosenschein,et al.  Negotiation and Task Sharing Among Autonomous Agents in Cooperative Domains , 1989, IJCAI.

[2]  Michael Winikoff,et al.  JACKTM Intelligent Agents: An Industrial Strength Platform , 2005, Multi-Agent Programming.

[3]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[4]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[5]  Michael Wooldridge,et al.  Programming Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technology) , 2007 .

[6]  Ralf Östermark A flexible platform for mixed-integer non-linear programming problems , 2007, Kybernetes.

[7]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[8]  Michael J. North,et al.  A Declarative Model Assembly Infrastructure for Verification and Validation , 2006, WCSS.

[9]  John Daniel Siirola,et al.  Computing Pareto fronts using distributed agents , 2004, Comput. Chem. Eng..

[10]  Virginia. Virginia Dignum . Dignum,et al.  Handbook of Research on Multi-Agent Systems - Semantics and Dynamics of Organizational Models , 2009, Handbook of Research on Multi-Agent Systems.

[11]  Rahul Sharma,et al.  Java¿ Message Service API Tutorial and Reference: Messaging for the J2EE¿ Platform , 2002 .

[12]  Steinar Hauan,et al.  Toward agent-based process systems engineering: proposed framework and application to non-convex optimization , 2003, Comput. Chem. Eng..

[13]  Agostino Poggi,et al.  JADE: a FIPA2000 compliant agent development environment , 2001, AGENTS '01.

[14]  Pierre Hansen,et al.  Cooperative Parallel Variable Neighborhood Search for the p-Median , 2004, J. Heuristics.

[15]  Gerhard Weiss,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 1999 .

[16]  Piotr Jedrzejowicz,et al.  JADE-Based A-Team as a Tool for Implementing Population-Based Algorithms , 2006, Sixth International Conference on Intelligent Systems Design and Applications.

[17]  Pedro S. de Souza,et al.  Asynchronous Teams: Cooperation Schemes for Autonomous Agents , 1998, J. Heuristics.

[18]  Michel Gendreau,et al.  Cooperative Parallel Tabu Search for Capacitated Network Design , 2002, J. Heuristics.

[19]  Ralf Östermark,et al.  Scalability of the genetic hybrid algorithm on a parallel supercomputer , 2008, Kybernetes.

[20]  Piotr Jedrzejowicz,et al.  JABAT Middleware as a Tool for Solving Optimization Problems , 2010, Trans. Comput. Collect. Intell..

[21]  P. Pardalos,et al.  Recent developments and trends in global optimization , 2000 .

[22]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[23]  K. Haase Java Message Service API Tutorial , 2002 .

[24]  Fabio Schoen,et al.  Stochastic techniques for global optimization: A survey of recent advances , 1991, J. Glob. Optim..

[25]  A. Neumaier Acta Numerica 2004: Complete search in continuous global optimization and constraint satisfaction , 2004 .

[26]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[27]  Makoto Yokoo,et al.  Search algorithms for agents , 1999 .

[28]  Sean Luke,et al.  MASON: A Multiagent Simulation Environment , 2005, Simul..

[29]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[30]  Michael Luck,et al.  Multi-Agent Systems and Applications , 2001, Lecture Notes in Computer Science.

[31]  Guillermo Ricardo Simari,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 2000 .

[32]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[33]  Eugenius Kaszkurewicz,et al.  Parallel Asynchronous Team Algorithms: Convergence and Performance Analysis , 1996, IEEE Trans. Parallel Distributed Syst..

[34]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[35]  Munindar P. Singh,et al.  Service-Oriented Computing: Semantics, Processes, Agents , 2010 .

[36]  Edmund H. Durfee,et al.  Distributed Problem Solving and Planning , 2001, EASSS.

[37]  Juliette Rouchier,et al.  Advancing Social Simulation: The First World Congressi [Post-Conference Proceedings of the World Congress on Social Simulation, WCSS 2006, Kyoto, Japan, August 21-25, 2006] , 2011, WCSS.

[38]  S. Ilker Birbil,et al.  Solving Global Optimization Problems Using MANGO , 2009, KES-AMSTA.

[39]  Figen Öztoprak,et al.  MANGO : A MultiAgent ENvironment for Global Optimization , 2008 .

[40]  Sarit Kraus,et al.  Negotiation and Cooperation in Multi-Agent Environments , 1997, Artif. Intell..

[41]  El-Ghazali Talbi,et al.  ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.

[42]  Michel Gendreau,et al.  Constraint Programming and Operations Research: Comments from an Operations Researcher , 2002, J. Heuristics.

[43]  Makoto Yokoo,et al.  Adopt: asynchronous distributed constraint optimization with quality guarantees , 2005, Artif. Intell..

[44]  A. Neumaier Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.

[45]  Hui Wang,et al.  A multi-agent approach for solving optimization problems involving expensive resources , 2005, SAC '05.

[46]  Sarit Kraus,et al.  Methods for Task Allocation via Agent Coalition Formation , 1998, Artif. Intell..

[47]  Frank Dignum,et al.  Issues in Agent Communication , 2000, Lecture Notes in Computer Science.

[48]  Steffen Staab,et al.  Knowledge Processes and Ontologies , 2001, IEEE Intell. Syst..