Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK

Abstract A significant number of wind turbines will reach the end of their planned service life in the near future. A decision on lifetime extension is complex and experiences to date are limited. This review presents the current state-of-the-art for lifetime extension of onshore wind turbines in Germany, Spain, Denmark, and the UK. Information was gathered through a literature review and 24 guideline-based interviews with key market players. Technical, economic and legal aspects are discussed. Results indicate that end-of-life solutions will develop a significant market over the next five years. The application of updated load simulation and inspections for technical lifetime extension assessment differs between countries. A major concern is the uncertainty about future electricity spot market prices, which determine if lifetime extension is economically feasible.

[1]  M. Patton Qualitative research and evaluation methods , 1980 .

[2]  Halil Ceylan,et al.  A survey of health monitoring systems for wind turbines , 2015 .

[3]  J. J. Melero,et al.  On the use of high-frequency SCADA data for improved wind turbine performance monitoring , 2017 .

[4]  Eugen Brühwiler,et al.  The use of long term monitoring data for the extension of the service duration of existing wind turbine support structures , 2016 .

[5]  A. Iliopoulos,et al.  Full load estimation of an offshore wind turbine based on SCADA and accelerometer data , 2016 .

[6]  Michel Verhaegen,et al.  Feedback–feedforward individual pitch control for wind turbine load reduction , 2009 .

[7]  Antonio Colmenar-Santos,et al.  Repowering: An actual possibility for wind energy in Spain in a new scenario without feed-in-tariffs , 2015 .

[8]  Pawel Niewczas,et al.  Life extension for wind turbine structures and foundations , 2016 .

[9]  Eric R. Ziegel,et al.  Statistical Methods for the Reliability of Repairable Systems , 2001, Technometrics.

[10]  Morten Nielsen,et al.  Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm , 2007 .

[11]  M. Patton Qualitative Research & Evaluation Methods: Integrating Theory and Practice , 2014 .

[12]  Wolfgang Menz,et al.  Interviews mit Experten. Eine praxisorientierte Einführung. , 2014 .

[13]  Lisa Sabine Ziegler,et al.  Brief communication: Structural monitoring for lifetime extension of offshore wind monopiles: can strain measurements at one level tell us everything? , 2017 .

[14]  David McMillan,et al.  Offshore wind turbine sub-assembly failure rates through time , 2015 .

[15]  Jochen Gläser,et al.  Experteninterviews und qualitative Inhaltsanalyse , 2010 .

[16]  Jens Nørkær Sørensen,et al.  The generics of wind turbine nacelle anemometry , 2009 .

[17]  Wolfgang Menz,et al.  Interviews mit Experten , 2014 .

[18]  Jørgen Højstrup,et al.  Measurement of rotor centre flow direction and turbulence in wind farm environment , 2014 .

[19]  S. Frandsen Turbulence and turbulence-generated structural loading in wind turbine clusters , 2007 .

[20]  Ervin Bossanyi,et al.  Individual Blade Pitch Control for Load Reduction , 2003 .

[21]  Torsten Faber,et al.  First guideline for the continued operation of wind turbines , 2010 .

[22]  D. A. Nethercot,et al.  Designer's guide to EN 1993-1-1 : Eurocode 3: Design of Steel Structures : General Rules and Rules for Buildings /L. Gardner and D. A. Nethercot , 2005 .

[23]  Christine Nadel,et al.  Case Study Research Design And Methods , 2016 .

[24]  Lin Wang,et al.  Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm , 2016 .

[25]  Montserrat Herrera Real Decreto 1699-2011, Disposición Final Segunda: Modificación del Real Decreto 661/2007, de 25 de Mayo, por el que se Regula la Actividad de Producción de Energía Eléctrica en Régimen Especial , 2014 .

[26]  Simon J. Watson,et al.  Using SCADA data for wind turbine condition monitoring – a review , 2017 .

[27]  Sarah Karlina-Barber,et al.  The effect of wakes on the fatigue damage of wind turbine components over their entire lifetime using short-term load measurements , 2016 .

[28]  Lars Morten Bardal,et al.  Performance Test of a 3MW Wind Turbine – Effects of Shear and Turbulence , 2015 .

[29]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[30]  Athanasios Kolios,et al.  Failure Mode Identification and End of Life Scenarios of Offshore Wind Turbines: A Review , 2015 .

[31]  Dirk Söffker,et al.  Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained results , 2016 .

[32]  Lisa Sabine Ziegler,et al.  Fatigue reassessment for lifetime extension of offshore wind monopile substructures , 2016 .

[33]  Peter Tavner,et al.  Reliability of wind turbine subassemblies , 2009 .

[34]  Jochen Gläser,et al.  Experteninterviews und qualitative Inhaltsanalyse als Instrumente rekonstruierender Untersuchungen. , 2010 .

[35]  John Dalsgaard Sørensen,et al.  Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads , 2016 .

[36]  William Leithead,et al.  Alleviation of unbalanced rotor loads by single blade controllers , 2009 .

[37]  Luís Simões da Silva,et al.  Design of Steel Structures: Eurocode 3: Design of Steel Structures, Part 1-1: General Rules and Rules for Buildings , 2010 .