Model Predictive Control with a Visuomotor System for Physics-based Character Animation

This article presents a Model Predictive Control framework with a visuomotor system that synthesizes eye and head movements coupled with physics-based full-body motions while placing visual attenti...

[1]  D. Robinson The mechanics of human smooth pursuit eye movement. , 1965, The Journal of physiology.

[2]  W. Müller JACOBSON, D. H. and D. Q. MAYNE: Differential dynamic programming. Modern analytic and computational methods in Science and Mathematics, No. 24. American Elsevier Publ. Co., Inc., New York 1970. XVI, 208 S., 17 Abb., Dfl. 51.50. , 1973 .

[3]  R. Leigh,et al.  The neurology of eye movements , 1984 .

[4]  D. Robinson,et al.  The upper limit of human smooth pursuit velocity , 1985, Vision Research.

[5]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[6]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[7]  Greg Welch,et al.  An Introduction to Kalman Filter , 1995, SIGGRAPH 2001.

[8]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex , 1997, Neural Computation.

[9]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[10]  Sebastian Thrun,et al.  Monte Carlo POMDPs , 1999, NIPS.

[11]  F. Lacquaniti,et al.  Does the brain model Newton's laws? , 2001, Nature Neuroscience.

[12]  Brian J. Scholl,et al.  The magical number 4 in vision , 2001, Behavioral and Brain Sciences.

[13]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[14]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[15]  Nancy S. Pollard,et al.  Efficient synthesis of physically valid human motion , 2003, ACM Trans. Graph..

[16]  Anne Condon,et al.  On the undecidability of probabilistic planning and related stochastic optimization problems , 2003, Artif. Intell..

[17]  C. K. Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, SIGGRAPH 2005.

[18]  John P. Lewis,et al.  Automated eye motion using texture synthesis , 2005, IEEE Computer Graphics and Applications.

[19]  H. Levent Akin,et al.  Kalman Based Finite State Controller for Partially Observable Domains , 2006 .

[20]  L. Itti Quantitative modelling of perceptual salience at human eye position , 2006 .

[21]  Adrien Treuille,et al.  Near-optimal character animation with continuous control , 2007, SIGGRAPH 2007.

[22]  Brian Guenter,et al.  Efficient symbolic differentiation for graphics applications , 2007, SIGGRAPH 2007.

[23]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[24]  George A Alvarez,et al.  How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. , 2007, Journal of vision.

[25]  C. Karen Liu,et al.  Optimization-based interactive motion synthesis , 2009, ACM Trans. Graph..

[26]  Leslie Pack Kaelbling,et al.  Belief space planning assuming maximum likelihood observations , 2010, Robotics: Science and Systems.

[27]  Tianjia Shao,et al.  Sampling-based contact-rich motion control , 2010, SIGGRAPH 2010.

[28]  C. Karen Liu,et al.  Optimal feedback control for character animation using an abstract model , 2010, SIGGRAPH 2010.

[29]  Yuval Tassa,et al.  Stochastic Differential Dynamic Programming , 2010, Proceedings of the 2010 American Control Conference.

[30]  Brent Lance,et al.  The Expressive Gaze Model: Using Gaze to Express Emotion , 2010, IEEE Computer Graphics and Applications.

[31]  Christopher E. Peters,et al.  A head movement propensity model for animating gaze shifts and blinks of virtual characters , 2010, Comput. Graph..

[32]  Ron Alterovitz,et al.  Motion planning under uncertainty using iterative local optimization in belief space , 2012, Int. J. Robotics Res..

[33]  Dinesh K. Pai,et al.  Eyecatch: simulating visuomotor coordination for object interception , 2012, ACM Trans. Graph..

[34]  Yuval Tassa,et al.  Synthesis and stabilization of complex behaviors through online trajectory optimization , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  Joel W. Burdick,et al.  Robot Motion Planning in Dynamic, Uncertain Environments , 2012, IEEE Transactions on Robotics.

[36]  Zoran Popovic,et al.  Discovery of complex behaviors through contact-invariant optimization , 2012, ACM Trans. Graph..

[37]  Aaron Hertzmann,et al.  Trajectory Optimization for Full-Body Movements with Complex Contacts , 2013, IEEE Transactions on Visualization and Computer Graphics.

[38]  Emanuel Todorov,et al.  Convex and analytically-invertible dynamics with contacts and constraints: Theory and implementation in MuJoCo , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[39]  Yuval Tassa,et al.  Real-time behaviour synthesis for dynamic hand-manipulation , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[40]  Jaakko Lehtinen,et al.  Online motion synthesis using sequential Monte Carlo , 2014, ACM Trans. Graph..

[41]  C. Karen Liu,et al.  Online control of simulated humanoids using particle belief propagation , 2015, ACM Trans. Graph..

[42]  Sean Andrist,et al.  Gaze and Attention Management for Embodied Conversational Agents , 2015, ACM Trans. Interact. Intell. Syst..

[43]  Brett R Fajen,et al.  The biomechanics of walking shape the use of visual information during locomotion over complex terrain. , 2015, Journal of vision.

[44]  Baining Guo,et al.  Improving Sampling‐based Motion Control , 2015, Comput. Graph. Forum.

[45]  Bilge Mutlu,et al.  Authoring directed gaze for full-body motion capture , 2016, ACM Trans. Graph..

[46]  Jan Peters,et al.  Catching heuristics are optimal control policies , 2016, NIPS.

[47]  Han Woong Lim,et al.  Normal range of eye movement and its relationship to age , 2016 .

[48]  Chris L. Baker,et al.  Rational quantitative attribution of beliefs, desires and percepts in human mentalizing , 2017, Nature Human Behaviour.

[49]  Tao Zhou,et al.  Deep learning of biomimetic sensorimotor control for biomechanical human animation , 2018, ACM Trans. Graph..