Deep learning of biomimetic sensorimotor control for biomechanical human animation

We introduce a biomimetic framework for human sensorimotor control, which features a biomechanically simulated human musculoskeletal model actuated by numerous muscles, with eyes whose retinas have nonuniformly distributed photoreceptors. The virtual human's sensorimotor control system comprises 20 trained deep neural networks (DNNs), half constituting the neuromuscular motor subsystem, while the other half compose the visual sensory subsystem. Directly from the photoreceptor responses, 2 vision DNNs drive eye and head movements, while 8 vision DNNs extract visual information required to direct arm and leg actions. Ten DNNs achieve neuromuscular control---2 DNNs control the 216 neck muscles that actuate the cervicocephalic musculoskeletal complex to produce natural head movements, and 2 DNNs control each limb; i.e., the 29 muscles of each arm and 39 muscles of each leg. By synthesizing its own training data, our virtual human automatically learns efficient, online, active visuomotor control of its eyes, head, and limbs in order to perform nontrivial tasks involving the foveation and visual pursuit of target objects coupled with visually-guided limb-reaching actions to intercept the moving targets, as well as to carry out drawing and writing tasks.

[1]  Ana Lucia Cruz Ruiz,et al.  Muscle‐Based Control for Character Animation , 2017, Comput. Graph. Forum.

[2]  Demetri Terzopoulos,et al.  Realistic modeling for facial animation , 1995, SIGGRAPH.

[3]  Geoffrey E. Hinton,et al.  NeuroAnimator: fast neural network emulation and control of physics-based models , 1998, SIGGRAPH.

[4]  Eftychios Sifakis,et al.  Comprehensive biomechanical modeling and simulation of the upper body , 2009, TOGS.

[5]  Jaroslav Krivánek,et al.  Reconstructing personalized anatomical models for physics-based body animation , 2016, ACM Trans. Graph..

[6]  Dinesh K. Pai,et al.  A biologically inspired controller for fast eye movements , 2011, 2011 IEEE International Conference on Robotics and Automation.

[7]  Dinesh K. Pai,et al.  Musculotendon simulation for hand animation , 2008, ACM Trans. Graph..

[8]  Eftychios Sifakis,et al.  Realistic Biomechanical Simulation and Control of Human Swimming , 2014, ACM Trans. Graph..

[9]  Vladlen Koltun,et al.  Optimizing locomotion controllers using biologically-based actuators and objectives , 2012, ACM Trans. Graph..

[10]  Hans-Peter Seidel,et al.  Head shop: generating animated head models with anatomical structure , 2002, SCA '02.

[11]  Demetri Terzopoulos,et al.  Deep Learning of Neuromuscular Control for Biomechanical Human Animation , 2015, ISVC.

[12]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[13]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[14]  Demetri Terzopoulos,et al.  Physically-based facial modelling, analysis, and animation , 1990, Comput. Animat. Virtual Worlds.

[15]  Ronald Fedkiw,et al.  Automatic determination of facial muscle activations from sparse motion capture marker data , 2005, SIGGRAPH '05.

[16]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[17]  Dinesh K. Pai,et al.  Eyecatch: simulating visuomotor coordination for object interception , 2012, ACM Trans. Graph..

[18]  Demetri Terzopoulos,et al.  Deep learning of biomimetic visual perception for virtual humans , 2018, SAP.

[19]  Mikhail Fain,et al.  Biomechanical simulation and control of hands and tendinous systems , 2015, ACM Trans. Graph..

[20]  Demetri Terzopoulos,et al.  Active Perception in Virtual Humans , 2000 .

[21]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[22]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[23]  Taesoo Kwon,et al.  Locomotion control for many-muscle humanoids , 2014, ACM Trans. Graph..

[24]  Michiel van de Panne,et al.  Flexible muscle-based locomotion for bipedal creatures , 2013, ACM Trans. Graph..

[25]  Dinesh K. Pai,et al.  Active volumetric musculoskeletal systems , 2014, ACM Trans. Graph..

[26]  Demetri Terzopoulos,et al.  Full-Body Hybrid Motor Control for Reaching , 2010, MIG.

[27]  Demetri Terzopoulos,et al.  Animat vision: Active vision in artificial animals , 1995, Proceedings of IEEE International Conference on Computer Vision.

[28]  Glen Berseth,et al.  DeepLoco: dynamic locomotion skills using hierarchical deep reinforcement learning , 2017, ACM Trans. Graph..

[29]  Dinesh K. Pai,et al.  Active gaze stabilization , 2014, ICVGIP.

[30]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[31]  Mark Pauly,et al.  Phace: physics-based face modeling and animation , 2017, ACM Trans. Graph..

[32]  Demetri Terzopoulos,et al.  Heads up!: biomechanical modeling and neuromuscular control of the neck , 2006, ACM Trans. Graph..

[33]  Dinesh K. Pai,et al.  Biomechanical Simulation of Human Eye Movement , 2010, ISMBS.

[34]  Razvan Pascanu,et al.  Theano: A CPU and GPU Math Compiler in Python , 2010, SciPy.

[35]  Taku Komura,et al.  Phase-functioned neural networks for character control , 2017, ACM Trans. Graph..

[36]  E. L. Schwartz,et al.  Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception , 1977, Biological Cybernetics.

[37]  Michael F. Deering,et al.  A photon accurate model of the human eye , 2005, SIGGRAPH '05.