Hybrid organic–inorganic CH3NH3PbI3 perovskite building blocks: Revealing ultra‐strong hydrogen bonding and mulliken inner complexes and their implications in materials design

Methylammonium lead iodide (CH3NH3PbI3) perovskite compound has produced a remarkable breakthrough in the photovoltaic history of solar cell technology because of its outstanding device‐based performance as a light‐harvesting semiconductor. Whereas the experimental and theoretical studies of this system in the solid state have been numerously reported in the last 4 years, its fundamental cluster physics is yet to be exploited. To this end, this study has performed theoretical investigations using DFT‐M06‐2X/ADZP to examine the principal geometrical, electronic, topological, and orbital properties of the CH3NH3PbI3 molecular building block. The intermolecular hydrogen bonded interactions examined for the most important conformers of the system are found to be unusually strong, with binding energies lying between −93.53 and −125.11 kcal mol−1 (beyond the covalent limit, −40 kcal mol−1), enabling us to classify the underlying interactions as ultra‐strong type since their characteristic properties are unidentical with those have already been proposed as very strong, strong, moderate, weak, and van der Waals. Based on this, together with the unusually high charge transfers, strong hyperconjugative interactions, sophisticated topologies of the charge density, and short intermolecular distances of separation, we have characterized the conformers of CH3NH3PbI3 as Mulliken inner complexes. The consequences of these, as well as of the ultra‐strong interactions, in designing novel functional nanomaterials are outlined. © 2017 Wiley Periodicals, Inc.

[1]  T. Miyasaka,et al.  Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2) , 2006 .

[2]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[3]  Pierangelo Metrangolo,et al.  Definition of the halogen bond (IUPAC Recommendations 2013) , 2013 .

[4]  R. Parthasarathi,et al.  Hydrogen bonding without borders: an atoms-in-molecules perspective. , 2006, The journal of physical chemistry. A.

[5]  Sabre Kais,et al.  Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3 , 2014, Nature Communications.

[6]  M. Huggins Electronic Structures of Atoms , 1921 .

[7]  H. M. Jang,et al.  The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3 , 2016, Scientific Reports.

[8]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[9]  T. Bendikov,et al.  CsSnBr3, A Lead-Free Halide Perovskite for Long-Term Solar Cell Application: Insights on SnF2 Addition , 2016 .

[10]  Steve Scheiner,et al.  Hydrogen Bonding: A Theoretical Perspective , 1997 .

[11]  R. S. Mulliken,et al.  Molecular complexes;: A lecture and reprint volume , 1969 .

[12]  Michael F Toney,et al.  Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges , 2015, Advanced materials.

[13]  Ł M Mentel,et al.  Can the Counterpoise Correction for Basis Set Superposition Effect Be Justified? , 2014, Journal of chemical theory and computation.

[14]  Pierangelo Metrangolo,et al.  The Halogen Bond , 2016, Chemical reviews.

[15]  P. Frey Review: Strong hydrogen bonding in molecules and enzymatic complexes , 2001 .

[16]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[17]  F. Giustino,et al.  Toward Lead-Free Perovskite Solar Cells , 2016 .

[18]  Richard P Matthews,et al.  Hydrogen bonding in ionic liquids. , 2015, Chemical Society reviews.

[19]  G. Desiraju,et al.  Distinction between the weak hydrogen bond and the van der Waals interaction , 1998 .

[20]  J. W. Larson,et al.  Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to Broensted acids from gas-phase fluoride exchange equilibrium measurements , 1983 .

[21]  J. Pople The Lennard-Jones lecture. Intermolecular binding , 1982 .

[22]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[23]  Gautam R. Desiraju,et al.  The C-h···o hydrogen bond:  structural implications and supramolecular design. , 1996, Accounts of chemical research.

[24]  K. Jose,et al.  Is there a hydrogen bond radius? Evidence from microwave spectroscopy, neutron scattering and X-ray diffraction results , 2005 .

[25]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[26]  A. Walsh Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites , 2015, The journal of physical chemistry. C, Nanomaterials and interfaces.

[27]  A. Bernasconi,et al.  Direct Evidence of Permanent Octahedra Distortion in MAPbBr3 Hybrid Perovskite , 2017 .

[28]  G. Desiraju,et al.  Van der waals and polar intermolecular contact distances: quantifying supramolecular synthons. , 2008, Chemistry, an Asian journal.

[29]  Lu J. Sham,et al.  ONE-PARTICLE PROPERTIES OF AN INHOMOGENEOUS INTERACTING ELECTRON GAS. , 1966 .

[30]  David J. Nesbitt,et al.  Definition of the hydrogen bond (IUPAC Recommendations 2011) , 2011 .

[31]  Chérif F. Matta,et al.  The Quantum theory of atoms in molecules : from solid state to DNA and drug design , 2007 .

[32]  G. Desiraju A bond by any other name. , 2011, Angewandte Chemie.

[33]  Pradeep R. Varadwaj,et al.  Fluorines in tetrafluoromethane as halogen bond donors: Revisiting address the nature of the fluorine's σhole , 2015 .

[34]  H. Szatyłowicz Structural aspects of the intermolecular hydrogen bond strength: H‐bonded complexes of aniline, phenol and pyridine derivatives , 2008 .

[35]  Chang Yoon,et al.  Linear Network Model of Gene Regulation for the Yeast Cell Cycle , 2004 .

[36]  G. V. Gibbs,et al.  Laplacian and bond critical point properties of the electron density distributions of sulfide bonds: A comparison with oxide bonds , 1999 .

[37]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[38]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[39]  Hiroshi Segawa,et al.  Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. , 2013, The journal of physical chemistry letters.

[40]  John Lekner,et al.  Electrostatics of two charged conducting spheres , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap. , 2016, The journal of physical chemistry letters.

[42]  A. Legon Nature of complexes B … ClF in the gas phase: Conclusions from systematic variation of the Lewis base B and a comparison of the B … ClF/B … HCl series. , 1997 .

[43]  Timothy Clark,et al.  Correct electrostatic treatment of noncovalent interactions: the importance of polarization , 2015 .

[44]  P. Jena,et al.  Super-ion inspired colorful hybrid perovskite solar cells. , 2016 .

[45]  R. Bader,et al.  A Bond Path: A Universal Indicator of Bonded Interactions , 1998 .

[46]  M. Yoon,et al.  Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite , 2016, Science Advances.

[47]  Frank Weinhold,et al.  Natural bond critical point analysis: Quantitative relationships between natural bond orbital‐based and QTAIM‐based topological descriptors of chemical bonding , 2012, J. Comput. Chem..

[48]  J. Fujisawa,et al.  Cation Role in Structural and Electronic Properties of 3D Organic–Inorganic Halide Perovskites: A DFT Analysis , 2014 .

[49]  Yong-Jun Jiang,et al.  Toward a uniform description of hydrogen bonds and halogen bonds: correlations of interaction energies with various geometric, electronic and topological parameters , 2017 .

[50]  Timothy Clark,et al.  Halogen bonding and other σ-hole interactions: a perspective. , 2013, Physical chemistry chemical physics : PCCP.

[51]  Shuzi Hayase,et al.  Reproducible Fabrication of Efficient Perovskite-based Solar Cells: X-ray Crystallographic Studies on the Formation of CH3NH3PbI3 Layers , 2014 .

[52]  P. Jena,et al.  B12(SCN)12–: An Ultrastable Weakly Coordinating Dianion , 2017 .

[53]  E. Francisco,et al.  Interacting Quantum Atoms:  A Correlated Energy Decomposition Scheme Based on the Quantum Theory of Atoms in Molecules. , 2005, Journal of chemical theory and computation.

[54]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[55]  Y. Lozovik,et al.  Large diffusion lengths of excitons in perovskite and TiO2 heterojunction , 2016, 1602.01589.

[56]  J. Chan,et al.  Orientation of Organic Cations in Hybrid Inorganic–Organic Perovskite CH3NH3PbI3 from Subatomic Resolution Single Crystal Neutron Diffraction Structural Studies , 2016 .

[57]  Aram Amassian,et al.  Ligand-Stabilized Reduced-Dimensionality Perovskites. , 2016, Journal of the American Chemical Society.

[58]  Bih-Yaw Jin,et al.  Can an entirely negative fluorine in a molecule, viz. perfluorobenzene, interact attractively with the entirely negative site(s) on another molecule(s)? Like liking like! , 2016 .

[59]  J. Echeverría,et al.  Dihydrogen intermolecular contacts in group 13 compounds: HH or EH (E = B, Al, Ga) interactions? , 2017, Dalton transactions.

[60]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[61]  P. Politzer,et al.  Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. , 1985, Environmental health perspectives.

[62]  A. Walsh,et al.  Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide , 2015, 1504.07508.

[63]  Arif D. Sheikh,et al.  Ambipolar solution-processed hybrid perovskite phototransistors , 2015, Nature Communications.

[64]  M. Kanatzidis,et al.  Halide Perovskites: Poor Man's High‐Performance Semiconductors , 2016, Advanced materials.

[65]  H. M. Jang,et al.  Resolving the Physical Origin of Octahedral Tilting in Halide Perovskites , 2016 .

[66]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[67]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[68]  S. Khanna,et al.  Hydrogen bonding of formamide, urea, urea monoxide and their thio-analogs with water and homodimers , 2014, Journal of Chemical Sciences.

[69]  K. Yamashita,et al.  Structural and electronic features of small hybrid organic-inorganic halide perovskite clusters: a theoretical analysis. , 2016, Physical chemistry chemical physics : PCCP.

[70]  Peter Politzer,et al.  σ-hole bonding between like atoms; a fallacy of atomic charges , 2008, Journal of molecular modeling.

[71]  Jin Jang,et al.  Highly efficient photoelectrochemical water splitting by a hybrid tandem perovskite solar cell. , 2016, Chemical communications.

[72]  P. Jena,et al.  Like Charges Attract? , 2016, The journal of physical chemistry letters.

[73]  Zesheng Li,et al.  Effects of water molecules on the chemical stability of MAGeI3 perovskite explored from a theoretical viewpoint. , 2016, Physical chemistry chemical physics : PCCP.

[74]  Shijing Sun,et al.  The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6 (MA = methylammonium) , 2016, 1603.00537.

[75]  Aron Walsh,et al.  Perspective: Theory and simulation of hybrid halide perovskites , 2017, The Journal of chemical physics.

[76]  J. B. Birks,et al.  Molecular complexes , 1976, Nature.

[77]  Peter Politzer,et al.  Halogen bonding: an interim discussion. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[78]  Fan Zheng,et al.  Material Innovation in Advancing Organometal Halide Perovskite Functionality. , 2015, The journal of physical chemistry letters.

[79]  G. Kresse,et al.  Band alignment of semiconductors from density-functional theory and many-body perturbation theory , 2014 .

[80]  Leonello Paoloni,et al.  Nature of the Hydrogen Bond , 1959 .

[81]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[82]  Arpita Varadwaj,et al.  Can a single molecule of water be completely isolated within the subnano-space inside the fullerene C60 cage? A quantum chemical prospective. , 2012, Chemistry.

[83]  E. Mosconi,et al.  Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell Operation , 2014 .

[84]  A. Cheetham,et al.  Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3. , 2015, Chemical communications.

[85]  Henry J. Snaith,et al.  Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites , 2015, 1504.07025.

[86]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[87]  S. J. Grabowski,et al.  Hydrogen Bonding—New Insights , 2006 .

[88]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[89]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[90]  T. Miyasaka,et al.  Role of Metal Oxide Electron-Transport Layer Modification on the Stability of High Performing Perovskite Solar Cells. , 2016, ChemSusChem.

[91]  The first example of a cage critical point in a single ring: A novel twisted α-helical ring topology , 2005 .

[92]  Mohammad Khaja Nazeeruddin Perovskite Solar Cells and Devices at EPFL Valais Wallis. , 2016, ChemSusChem.

[93]  H. Jung,et al.  A Sharp Focus on Perovskite Solar Cells at Sungkyun International Solar Forum (SISF) , 2016 .

[94]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[95]  R. Bader,et al.  Bond paths are not chemical bonds. , 2009, The journal of physical chemistry. A.

[96]  Vincent Tognetti,et al.  On the use of Bader’s atomic charges for the evaluation of charge transfers between ground and excited states , 2013 .

[97]  R. Bader,et al.  A topological theory of molecular structure , 1981 .

[98]  F. El-Mellouhi,et al.  Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations , 2016 .

[99]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[100]  M. Gutowski,et al.  Electron-Driven Acid-Base Chemistry: Proton Transfer from Hydrogen Chloride to Ammonia , 2008, Science.

[101]  Pradeep R. Varadwaj,et al.  Revealing the Cooperative Chemistry of the Organic Cation in the Methylammonium Lead Triiodide Perovskite Semiconductor System , 2018, ChemistrySelect.

[102]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[103]  Professor Dr. George A. Jeffrey,et al.  Hydrogen Bonding in Biological Structures , 1991, Springer Berlin Heidelberg.

[104]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[105]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[106]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[107]  H. Marques,et al.  DFT-B3LYP, NPA-, and QTAIM-based study of the physical properties of [M(II)(H2O)2(15-crown-5)] (M = Mn, Fe, Co, Ni, Cu, Zn) complexes. , 2011, The journal of physical chemistry. A.

[108]  Paolo Umari,et al.  Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications , 2014, Scientific Reports.

[109]  M. Sigalov,et al.  Estimating the energy of intramolecular hydrogen bonds from 1H NMR and QTAIM calculations. , 2016, Organic & biomolecular chemistry.

[110]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.

[111]  Gautam R. Desiraju,et al.  The Weak Hydrogen Bond: In Structural Chemistry and Biology , 1999 .

[112]  Timothy Clark,et al.  Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.

[113]  Luis M. Pazos-Outón,et al.  Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water , 2016, Nature Communications.

[114]  Aron Walsh,et al.  The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells , 2015, Nature Communications.

[115]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[116]  M. Scholfield,et al.  Halogen bonding (X‐bonding): A biological perspective , 2013, Protein science : a publication of the Protein Society.

[117]  Rustam Z. Khaliullin,et al.  Covalency of hydrogen bonds in liquid water can be probed by proton nuclear magnetic resonance experiments , 2015, Nature Communications.

[118]  Xianyu Deng,et al.  Effects of Organic Cation Additives on the Fast Growth of Perovskite Thin Films for Efficient Planar Heterojunction Solar Cells. , 2016, ACS applied materials & interfaces.

[119]  C. H. Park,et al.  First-Principles Study of the Structural and the Electronic Properties of the Lead-Halide-Based Inorganic-Organic perovskites (CH3NH3)PbX3 and CsPbX3 (X = Cl, Br, I) , 2004 .

[120]  I. Hill,et al.  Systematic study on the impact of water on the performance and stability of perovskite solar cells , 2016 .

[121]  Stefan Goedecker,et al.  Extended halogen bonding between fully fluorinated aromatic molecules. , 2015, ACS nano.

[122]  J. Novoa,et al.  Cation-anion hydrogen bonds: a new class of hydrogen bonds that extends their strength beyond the covalent limit. A theoretical characterization. , 2011, The journal of physical chemistry. A.

[123]  Cesare Soci,et al.  Lead iodide perovskite light-emitting field-effect transistor , 2015, Nature Communications.

[124]  Matthew L. Leininger,et al.  Psi4: an open‐source ab initio electronic structure program , 2012 .

[125]  J. Murray,et al.  Role of Polarization in Halogen Bonds , 2014 .

[126]  M. Saidaminov,et al.  Making and Breaking of Lead Halide Perovskites. , 2016, Accounts of chemical research.

[127]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[128]  B. Iversen,et al.  Quantitative analysis of intermolecular interactions in orthorhombic rubrene , 2015, IUCrJ.

[129]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[130]  D. Zhong,et al.  Atomic Structures of CH3NH3PbI3 (001) Surfaces. , 2016, ACS nano.

[131]  E. Meyer,et al.  Direct quantitative measurement of the C═O⋅⋅⋅H–C bond by atomic force microscopy , 2017, Science Advances.

[132]  Frank Weinhold,et al.  Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives , 2012, J. Comput. Chem..

[133]  G. A. Jeffrey,et al.  An Introduction to Hydrogen Bonding , 1997 .

[134]  P. Jena,et al.  Molecular Origin of Properties of Organic-Inorganic Hybrid Perovskites: The Big Picture from Small Clusters. , 2016, The journal of physical chemistry letters.

[135]  Pradeep R. Varadwaj,et al.  Methylammonium Lead Trihalide Perovskite Solar Cell Semiconductors Are Not Organometallic , 2017, 1703.09885.

[136]  NBO 6.0 Program Manual Natural Bond Orbital Analysis Programs , 2013 .

[137]  Richard Dronskowski,et al.  Covalency of hydrogen bonds in solids revisited. , 2014, Chemical communications.

[138]  I. Bruno,et al.  Cambridge Structural Database , 2002 .

[139]  H. Snaith,et al.  Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells , 2016 .

[140]  Chérif F. Matta,et al.  The Quantum Theory of Atoms in Molecules , 2007 .

[141]  G. Ceder,et al.  Prediction of semiconductor band edge positions in aqueous environments from first principles , 2011 .

[142]  Sunčica Z Borozan,et al.  Halogen bonding in complexes of proteins and non-natural amino acids , 2013, Comput. Biol. Chem..

[143]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[144]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[145]  G. Cantele,et al.  Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides , 2008 .

[146]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[147]  Aron Walsh,et al.  Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles , 2013, 1309.4215.

[148]  L. Tan,et al.  Intermolecular Interactions in Hybrid Perovskites Understood from a Combined Density Functional Theory and Effective Hamiltonian Approach , 2017 .

[149]  Ruiqin Q. Zhang,et al.  Molecular orbital analysis of the hydrogen bonded water dimer , 2016, Scientific Reports.

[150]  D. Truhlar,et al.  Calculation of semiconductor band gaps with the M06-L density functional. , 2009, The Journal of chemical physics.

[151]  Chérif F. Matta,et al.  Electron-density descriptors as predictors in quantitative structure--activity/property relationships and drug design. , 2011, Future medicinal chemistry.

[152]  Simon W. L. Hogan,et al.  Competition between hydrogen and halogen bonding in halogenated 1‐methyluracil: Water systems , 2016, J. Comput. Chem..

[153]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[154]  Gautam R Desiraju,et al.  Hydrogen bridges in crystal engineering: interactions without borders. , 2002, Accounts of chemical research.

[155]  Pradeep R. Varadwaj,et al.  Unusual bonding modes of perfluorobenzene in its polymeric (dimeric, trimeric and tetrameric) forms: entirely negative fluorine interacting cooperatively with entirely negative fluorine. , 2015, Physical chemistry chemical physics : PCCP.

[156]  R. Ruoff Mutual polarization of monomer charge distribution in (HCN)2, (HCN)3, and (HCN)∞ , 1991 .

[157]  J Grant Hill,et al.  Halogen Bonding with Phosphine: Evidence for Mulliken Inner Complexes and the Importance of Relaxation Energy. , 2016, The journal of physical chemistry. A.

[158]  W. Cleland,et al.  Low-barrier hydrogen bonds and enzymic catalysis. , 1994, Science.

[159]  Shweta Agarwala,et al.  Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. , 2015, The journal of physical chemistry letters.

[160]  A. Cheetham,et al.  Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture. , 2014, Journal of the American Chemical Society.

[161]  Sławomir Janusz Grabowski,et al.  What is the covalency of hydrogen bonding? , 2011, Chemical reviews.

[162]  P. Jena,et al.  Superhalogens as building blocks of two-dimensional organic-inorganic hybrid perovskites for optoelectronics applications. , 2016, Nanoscale.

[163]  Giampiero Ruani,et al.  Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. , 2014, Physical chemistry chemical physics : PCCP.

[164]  T. Hansen,et al.  Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. , 2015, Chemical communications.

[165]  Benjamin G. Penn,et al.  Perovskites: transforming photovoltaics, a mini-review , 2015 .

[166]  A. Goodwin,et al.  The same and not the same: molecular perovskites and their solid-state analogues , 2017 .

[167]  Jan H. Jensen,et al.  Toward a General Theory of Hydrogen Bonding: The Short, Strong Hydrogen Bond [HOH···OH]- , 2000 .

[168]  Jian Shi,et al.  Discovering lead-free perovskite solar materials with a split-anion approach. , 2016, Nanoscale.

[169]  Clémence Corminboeuf,et al.  Simultaneous Visualization of Covalent and Noncovalent Interactions Using Regions of Density Overlap , 2014, Journal of chemical theory and computation.

[170]  A. Walsh,et al.  Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites. , 2015, The journal of physical chemistry letters.

[171]  Peter A. Kollman,et al.  Theory of hydrogen bond directionality , 1972 .

[172]  J. Grant Hill,et al.  The halogen bond in thiirane⋯ClF: an example of a Mulliken inner complex , 2014 .

[173]  Chérif F. Matta,et al.  Atomic Charges Are Measurable Quantum Expectation Values: A Rebuttal of Criticisms of QTAIM Charges , 2004 .

[174]  S. Gagné,et al.  Isomorphous Crystals from Diynes and Bromodiynes Involved in Hydrogen and Halogen Bonds , 2016 .

[175]  R. Berger,et al.  Influence of the mixed organic cation ratio in lead iodide based perovskite on the performance of solar cells. , 2016, Physical chemistry chemical physics : PCCP.

[176]  D. Herschlag,et al.  The change in hydrogen bond strength accompanying charge rearrangement: implications for enzymatic catalysis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[177]  Pradeep R. Varadwaj,et al.  The physical chemistry of coordinated aqua-, ammine-, and mixed-ligand Co2+ complexes: DFT studies on the structure, energetics, and topological properties of the electron density. , 2010, Physical chemistry chemical physics : PCCP.

[178]  G. P. Schiemenz The Sum of van der Waals Radii – A Pitfall in the Search for Bonding , 2007 .

[179]  Santiago Alvarez,et al.  A cartography of the van der Waals territories. , 2013, Dalton transactions.

[180]  A. Michaelides,et al.  Quantum nature of the hydrogen bond , 2011, Proceedings of the National Academy of Sciences.

[181]  Juan Bisquert,et al.  Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[182]  C. Perrin,et al.  Are there single-well hydrogen bonds in pyridine-dichloroacetic acid complexes? , 2010, Chemical communications.

[183]  Bih-Yaw Jin,et al.  Halogen bonding interaction of chloromethane with several nitrogen donating molecules: addressing the nature of the chlorine surface σ-hole. , 2014, Physical chemistry chemical physics : PCCP.