The practice of clausification in automatic theorem proving

In the process of resolution based Automatic Theorem Proving, problems expressed in First Order Form (FOF) are transformed by a clausifier to Clause Normal Form (CNF). This research examines and compares clausifiers. The boundaries between clausification, simplification, and solution search are delineated, and common clausification and simplification operations are documented. Four known clausifiers are evaluated, thus providing insight into their relative performance, and also providing baseline data for future evaluation of clausifiers.

[1]  Ross A. Overbeek,et al.  Complexity and related enhancements for automated theorem-proving programs , 1976 .

[2]  Jörg H. Siekmann,et al.  KEIM: A Toolkit for Automated Deduction , 1994, CADE.

[3]  Robert A. Kowalski,et al.  Semantic Trees in Automatic Theorem-Proving , 1983 .

[4]  William McCune,et al.  OTTER 3.0 Reference Manual and Guide , 1994 .

[5]  K. Devlin THE COMPUTER MODELLING OF MATHEMATICAL REASONING , 1986 .

[6]  Elmar Eder An Implementation of a Theorem Prover Based on the Connection Method , 1984, AIMSA.

[7]  M. K. Rennie,et al.  Logic: theory and practice , 1973 .

[8]  J. W. Addison,et al.  Automated development of fundamental mathematical theories , 1992 .

[9]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[10]  J. A. Robinson,et al.  Automatic Deduction with Hyper-Resolution , 1983 .

[11]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[12]  Elmar Eder,et al.  Relative complexities of first order calculi , 1992, Artificial intelligence = Künstliche Intelligenz.

[13]  James R. Slagle,et al.  Automatic Theorem Proving With Renamable and Semantic Resolution , 1967, JACM.

[14]  Geoff Sutcliffe,et al.  The Design of the CADE-13 ATP System Competition , 1996, CADE.

[15]  David A. Plaisted,et al.  A Complete Semantic Back Chaining Proof System , 1990, CADE.

[16]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[17]  L. Wos,et al.  Paramodulation and Theorem-Proving in First-Order Theories with Equality , 1983 .

[18]  David M. Sandford Using Sophisticated Models in Resolution Theorem Proving , 1980, Lecture Notes in Computer Science.

[19]  Mark E. Stickel,et al.  A Prolog Technology Theorem Prover , 1990, CADE.

[20]  Alan Bundy Proceedings of the 12th International Conference on Automated Deduction , 1994 .

[21]  Alonzo Church,et al.  Introduction to Mathematical Logic , 1991 .

[22]  Donald W. Loveland,et al.  Mechanical Theorem-Proving by Model Elimination , 1968, JACM.

[23]  John K. Slaney SCOTT: A Model-Guided Theorem Prover , 1993, IJCAI.

[24]  Matt Kaufmann,et al.  DEFN-SK: An Extension of the Boyer-Moore Theorem Prover to Handle First-Order Quantifiers ***DRAFT*** , 1989 .

[25]  Geoff Sutcliffe,et al.  A Linear Deduction System with Integrated Semantic Guidance , 1992 .

[26]  Larry Wos,et al.  Automated Reasoning: Introduction and Applications , 1984 .

[27]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[28]  Jörg Flum,et al.  Mathematical logic , 1985, Undergraduate texts in mathematics.

[29]  Mark E. Stickel,et al.  A Prolog Technology Theorem Prover: A New Exposition and Implementation in Prolog , 1990, Theor. Comput. Sci..

[30]  Tanel Tammet,et al.  A Resolution Theorem Prover for Intuitonistic Logic , 1996, CADE.

[31]  David A. Plaisted,et al.  A Structure-Preserving Clause Form Translation , 1986, J. Symb. Comput..

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  Thomas Rath,et al.  On the Practical Value of Different Definitional Translations to Normal Form , 1996, CADE.

[34]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.